卡尔·弗里德里希·高斯,全称叫做约翰·卡尔·弗里德里希·高斯,是德国著名数学家、物理学家、生卒时间1777年4月30日—1855年2月23日。
人物简介
约翰·卡尔·弗里德里希·高斯(德语:Johann Carl Friedrich Gauß; ,英语:Gauss,拉丁语:Carolus Fridericus Gauss,1777年4月30日—1855年2月23日),德国著名数学家、物理学家、天文学家、几何学家,大地测量学家,毕业于Carolinum学院(现布伦瑞克工业大学)。
高斯生于不伦瑞克。1796年,高斯发现了正十七边形的尺规作图法。1807年高斯成为哥廷根大学教授和哥廷根天文台台长。1818年—1826年间,汉诺威公国的大地测量工作由高斯主导。1840年高斯与韦伯一同画出世界上第一张地球磁场图。
高斯被认为是世界上最重要的数学家之一,享有“数学王子”的美誉。
高斯
人物生平
早年生活
高斯于1777年4月30日出生于不伦瑞克。高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。他曾说,他能够在脑袋中进行复杂的计算。
小时候高斯家里很穷,且他父亲不认为学问有何用,但高斯依旧喜欢看书,话说在小时候,冬天吃完饭后他父亲就会要他上床睡觉,以节省燃油,但当他上床睡觉时,他会将芜菁的内部挖空,里面塞入棉布卷,当成灯来使用,以继续读书。
天赋异禀
当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学,即非欧几里得几何学。他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。
高斯的老师Bruettner与他助手Martin Bartels 很早就认识到了高斯在数学上异乎寻常的天赋,同时赫尔佐格卡尔·威廉·费迪南德·冯·布伦瑞克(Herzog Carl Wilhelm Ferdinand von Braunschweig)也对这个天才儿童留下了深刻印象。于是他们从高斯14岁起便资助其学习与生活。这也使高斯能够在公元1792-1795年在Carolinum学院(布伦瑞克工业大学的前身)学习。18岁时,高斯转入哥廷根大学学习。在他19岁时,第一个成功的证明了正十七边形可以用尺规作图。
婚姻生活
高斯于公元1805年10月5日与来自Braunschweig的Johanna Elisabeth Rosina Osthoff小姐(1780-1809)结婚。在公元1806年8月21日迎来了他生命中的第一个孩子乔瑟夫。此后,他又有两个孩子。Wilhelmine(1809-1840)和Louis(1809-1810)。
教授台长
1807年高斯成为哥廷根大学的教授和当地天文台的台长。
人物逝世
高斯非常信教且保守。他的父亲死于1808年4月14日,晚些时候的1809年10月11日,他的第一位妻子Johanna也离开人世。次年8月4日高斯迎娶第二位妻子Friederica Wilhelmine(1788-1831)。他们又有三个孩子:Eugen(1811-1896)、Wilhelm(1813-1883)和Therese(1816-1864)。1831年9月12日他的第二位妻子也死去,1837年高斯开始学习俄语。1839年4月18日,他的母亲在哥廷根逝世,享年95岁。高斯于1855年2月23日凌晨1点在哥廷根去世。
主要成就
17岁的高斯发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。
次年,仅用尺规便构造出了17边形。并为流传了2000年的欧氏几何提供了自古希腊时代以来的第一次重要补充。
高斯总结了复数的应用,并且严格证明了每一个n阶的代数方程必有n个实数或者复数解。在他的第一本著名的著作《算术研究》中,作出了二次互反律的证明,成为数论继续发展的重要基础。在这部著作的第一章,导出了三角形全等定理的概念。
高斯在最小二乘法基础上创立的测量平差理论的帮助下,测算天体的运行轨迹。他用这种方法,测算出了小行星谷神星的运行轨迹。
谷神星于1801年被意大利天文学家皮亚齐发现,但因病他耽误了观测,从而失去了这颗小行星的轨迹。皮亚齐以希腊神话中的“丰收女神”(Ceres)对它命名,称为谷神星(Planetoiden Ceres),并将自己以前观测的数据发表出来,希望全球的天文学家一起寻找。高斯通过以前3次的观测数据,计算出了谷神星的运行轨迹。奥地利天文学家 Heinrich Olbers根据高斯计算出的轨道成功地发现了谷神星。高斯将这种方法发表在其著作《天体运动论》(Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium)中。
为了获知每年复活节的日期,高斯推导了复活节日期的计算公式。
1818年至1826年间,高斯主导了汉诺威公国的大地测量工作。通过最小二乘法为基础的测量平差的方法和求解线性方程组的方法,显著地提高了测量的精度。
高斯亲自参加野外测量工作。他白天观测,夜晚计算。在五六年间,经他亲自计算过的大地测量数据超过100万个。当高斯领导的三角测量外场观测走上正轨后,高斯把主要精力转移到处理观测成果的计算上,写出了近20篇对现代大地测量学具有重大意义的论文。在这些论文中,他推导了由椭圆面向圆球面投影时的公式,并作出了详细证明。这个理论仍有应用的价值。
汉诺威公国的大地测量工作至1848年结束。这项大地测量史上的巨大工程,如果没有高斯在理论上的仔细推敲,在观测上力图合理和精确,在数据处理上尽量周密和细致,就不能圆满的完成。在当时的不发达的条件下,布设了大规模的大地控制网,精确地确定2578个三角点的大地坐标。
为了用椭圆在球面上的正形投影理论解决大地测量中出现的问题,在这段时间内高斯亦从事了曲面和投影理论的研究,这项成果成为了微分几何的重要理论基础。他独立地提出了不能证明欧氏几何的平行公设具有‘物理的’必然性,至少不能用人类的理智给出这种证明。但他的非欧几何理论并未发表。也许他是出于对同时代的人不能理解这种超常理论的担忧。相对论证明了宇宙空间实际上是非欧几何的空间。高斯的思想被近100年后的物理学接受了。
高斯试图在汉诺威公国的大地测量中通过测量Harz的Brocken——Thuringer Wald的Inselsberg——哥廷根的Hohen Hagen三个山头所构成的三角形的内角和,以验证非欧几何的正确性,但未成功。高斯的朋友鲍耶的儿子雅诺斯在1823年证明了非欧几何的存在。高斯对他勇于探索的精神表示了赞扬。1840年,罗巴切夫斯基用德文写了《平行线理论的几何研究》一文。这篇论文的发表引起了高斯的注意。他非常重视这一论证,积极建议哥廷根大学聘请罗巴切夫斯基为通信院士。为了能直接阅读他的著作,从这一年开始,63岁的高斯开始学习俄语,并最终掌握了这门外语。高斯最终成为微分几何的始祖(高斯、雅诺斯和罗巴切夫斯基)之一。
出于对实际应用的兴趣,高斯发明了日光反射仪。日光反射仪可以将光束反射至大约450公里外的地方。高斯后来不止一次地为原先的设计作出改进,试制成功了后来被广泛应用于大地测量的镜式六分仪。
19世纪30年代,高斯发明了磁强计。他辞去了天文台的工作,而转向物理的研究。他与韦伯(1804-1891)在电磁学领域共同工作。他比韦伯年长27岁,以亦师亦友的身份与其合作。1833年,通过受电磁影响的罗盘指针,他向韦伯发送出电报。这不仅是从韦伯的实验室与天文台之间的第一个电话电报系统,也是世界第一个电话电报系统。尽管线路才8千米长。
1840年,他和韦伯画出了世界第一张地球磁场图,并且次年,这些位置得到美国科学家的证实。
高斯在数个领域进行研究,但只把他认为已经成熟的理论发表出来。他经常对他的同事表示,该同事的结论已经被自己以前证明过了,只是因为基础理论的不完备而没有发表。批评者说他这样做是因为喜欢抢出风头。事实上高斯把他的研究结果都记录起来了。他死后,他的20部纪录着他的研究结果和想法的笔记被发现,证明高斯所说的是事实。一般人认为,20部笔记并非高斯笔记的全部。
轶事典故
三岁纠错
高斯三岁时便能够纠正他父亲的借债帐目。
快速求和
用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。
家庭成员
高斯个人的生活因为他的第一任妻子Johanna Osthoff在1809年早逝,以及他的孩子Louis也相继死去而显得黯然失色。高斯跌入一个他从来没有完全恢复的忧郁深渊。他后来再婚,对象是他第一任妻子的朋友,名叫Friederica Wilhelmine Waldeck,但通常称作Minna。当他的第二任妻子在长期的病痛后死于1831年时,他的其中一个女儿Therese接手了整个家庭并且照顾高斯直到他的生命结束。
他的母亲则从1817年居住在他家直到1839年她死去。
后世纪念
学校方面
下萨克森州和哥廷根大学图书馆已经将高斯的全部著作数位化,并放置于互联网上。
钱币方面
高斯的肖像曾被印刷在从1989年至2001年流通的10元德国马克纸币上。
在隋末唐初的乱世之中,英雄豪杰辈出,各方势力纷争不断。李子通与伍云召,这两位人物虽有着不同的人生详情
在三国时期风云变幻的历史舞台上,吾彦与吾粲这两位人物留下了各自的足迹。他们姓氏相同,且同为吴郡人详情
在历史的漫漫长河中,刘歆作为西汉末年极具影响力的人物,他的学术成就与政治经历都备受瞩目。而他的后详情
在三国历史中,司马朗作为司马懿的长兄,其死因一直备受关注。尤其是多放点盐就死了这一说法,更是引发详情
作为中国历史上最具争议的军事将领之一,李陵的命运轨迹始终笼罩在忠诚与背叛、英勇与怯懦的争议迷雾中详情
在明末南明政权的动荡岁月里,马士英与东林党之间的关系错综复杂,宛如一团乱麻,而马士英是否为东林党详情
史天泽(1202年—1275年),字润甫,大兴永清(今河北永清)人,元朝初年名将、政治家,官至中详情
西晋末年,一位出身寒微的将领以雷霆手段平定叛乱,声威震慑中原,时人将其比作韩信、白起。然而,这位详情
在东汉末年的动荡岁月中,黄巾起义如燎原之火,迅速席卷了整个中原大地。这场由张角领导的农民起义,不详情
在浩瀚的历史长河中,许多人物的名字因历史事件或家族背景而被后人铭记,司马谲便是其中之一。作为晋惠详情
在南宋绍兴十一年(1142年)的寒冬,宋高宗赵构与宰相秦桧以莫须有罪名将岳飞毒杀于大理寺狱中。这详情
在唐代诗坛的璀璨星空中,李群玉宛如一颗耀眼的明珠,以其卓越的诗才闻名遐迩。然而,他不仅在诗歌创作详情
在华夏文明的源头,轩辕黄帝宛如一座巍峨的丰碑,承载着中华民族的起源记忆与文化传承。然而,关于他的详情
在南朝波谲云诡的历史舞台上,王僧绰与王僧辩宛如两颗璀璨却又命运多舛的星辰。他们出身世家,却在不同详情
在唐朝波澜壮阔的历史画卷中,安定思公主宛如一颗隐匿于云雾中的星辰,其是否存在曾引发诸多争议。然而详情
在人类文明发展的宏大叙事中,烧开水这一日常行为看似微不足道,却蕴含着深刻的社会、文化和健康价值。详情
在南宋文坛的璀璨星河中,林升宛如一颗隐秘的明珠,虽流传作品有限,却以独特的艺术魅力与深刻的思想内详情
在明朝洪武年间,朱元璋以铁腕手段整顿吏治,意图重塑官场清廉之风。然而,一场名为郭桓案的贪腐大案,详情
在南朝的历史长河中,陈文赞作为南朝陈朝开国皇帝陈霸先的父亲,虽未亲历帝王之尊,却因儿子的显赫成就详情
在佛教文化中,降龙迦叶尊者以降伏龙王、守护佛法的传奇形象深入人心,而其与妻子妙贤的情感故事,则展详情
在德国哲学史上,路德维希·费尔巴哈以其对宗教的深刻批判和对人性的重新诠释而著称。他的哲学思想犹如详情
玛丽·博林作为亨利八世宫廷中一位命运跌宕的女性,其子亨利·凯里的人生轨迹同样充满戏剧性。尽管关于详情
在云南西部高黎贡山南麓的崇山峻岭间,一座名为磨盘山的险峻山岭静默矗立。这座海拔2600余米的山峰详情
公元215年的合肥城下,一场被后世神话为"八百破十万"的战役,实则是三国时期详情
在探讨中国古代军事史时,"淝水之战"作为以少胜多的经典战例广为人知,但&qu详情
《左传》作为一部叙事详实的史书,以其高超的叙事技巧和深刻的历史洞察力,为后人展现了春秋时期诸多重详情
在历史的长河中,北方草原上的游牧民族乌桓,曾是汉朝边疆的重要力量。然而,随着东汉末年的局势动荡,详情
在中国古代历史的长河中,秦朝的统一战争无疑是一段波澜壮阔的篇章。然而,在这场规模空前的征服之战中详情
在中国三国时期的历史长河中,英雄辈出,战事频仍,其中一场以少胜多的经典战役——逍遥津之战,至今仍详情
长平之战,作为中国古代军事史上最早、规模最大、最彻底的大型歼灭战,其影响深远,不仅决定了战国格局详情
在历史的长河中,总有一些战役以其独特的战略意义、惊心动魄的战斗过程和深远的历史影响,被后人铭记并详情
战国时期,华夏大地上战火纷飞,其中邯郸之战无疑是这一系列战争中最为震撼的篇章之一。这场战役不仅改详情
在中国古代历史上,战争是推动历史进程的重要力量。而在众多战争中,牧野之战无疑是其中最具代表性的一详情
在科学的世界里,有一种细胞被赋予了不死的名号,这就是海拉细胞。这种细胞源自于一位名叫亨丽埃塔·拉详情
在中国古代的神话传说中,姜子牙和鬼谷子都是极具智慧和能力的传奇人物。他们分别代表了道家和兵家的智详情
一、背景介绍 秦始皇陵兵马俑是中国历史上最著名的考古发现之一,被誉为世界第八大奇迹。然而,这些详情
标题:秦始皇10大诡异事件 一、陵墓之谜 1. 兵马俑:秦始皇陵的兵马俑被认为是世界上最大的详情
虞姬,中国历史上著名的女性人物,她与项羽的爱情故事被后人传颂不衰。而刘邦,作为项羽的对手和汉朝的详情
胤祥没有遭到雍正的清洗,但他在年轻时去世,这一点对于一些历史学家来说存在着一些争议。 一些人质详情
满清十二帝内没有溥仪的画像,只有照片,是什么原因呢? 在满清十二帝中,没有任何一位皇帝画过溥仪详情
溥仪的文化水平不仅仅是初中程度,尽管他的户口本上写着初中,但这并不是他真实的文化水平。 作为大详情
古人常说不孝有三,无后为大,而在皇权社会,皇帝不具备生育能力,可不仅仅是不孝的问题,毕竟古代历来详情
息肌丸是什么东西?真的有这种药存在吗?息肌丸是一种有催情作用的美容香精,塞到肚脐眼里融化到体内,详情
赵飞燕服用息肌丸保持美貌,息肌丸是什么东西呢?感兴趣的读者可以跟着趣历史小编一起往下看。 据说详情
古印度文明,作为人类文明的摇篮之一,承载着丰富的文化遗产和深邃的哲学思想。其影响力不仅深远地渗透到了详情
彼岸花,又称曼珠沙华,是一种充满神秘色彩的花卉。这种花通常盛开在秋季,其鲜红的花瓣和细长的花蕊形详情
在现代社会,我们依赖于各种产品来完成日常生活的各个方面。从智能手机到笔记本电脑,从家用电器到汽车详情
在我们的日常生活中,我们常常会忽视地球上的一些奇妙之处。然而,当我们从太空中俯瞰地球时,这些事物详情
在生物多样性的广阔领域中,每一次新的物种发现都像是打开了一扇通向未知世界的窗户。最近,科学家们在详情
在这个世界上,有些物品的价值超越了我们的想象。它们不仅仅是物质的存在,更是艺术、历史和文化的象征详情
在世界的每一个角落,无论是热血沸腾的球场,还是电视机前的粉丝,都被一位女性棒球选手的魅力所吸引。详情
位于中国云南的九龙河瀑布群,被誉为中国的尼亚加拉,是中国最大的瀑布群。这里的瀑布高低错落,气势磅详情
北仑河口,位于中国浙江省宁波市北仑区,是中国大陆海岸线的最南点。这里既有美丽的海滨风光,也有丰富详情
鸭绿江口,位于中国东北地区,是中国大陆海岸线的最北点。这里既有壮丽的山川河流,也有悠久的历史文化详情
湖北省,位于中国中部,素有千湖之省的美誉。全省湖泊众多,水域面积占总面积的四分之一。今天,就让我详情
在唐代诗坛的苍茫雪原中,刘长卿以五言绝句《逢雪宿芙蓉山主人》凿出一眼温热的清泉。这首诞生于贬谪途详情
在《红楼梦》这部文学巨著中,妙玉无疑是一个极具神秘色彩和独特魅力的人物。她以超凡脱俗的才情、孤傲详情
在中国悠久的历史长河中,涌现出了无数才华横溢的诗人,他们用优美的诗句抒发了对人生、爱情、自然和社详情
在中国古代文学的璀璨星河中,《诗经》犹如一颗耀眼的明珠,汇聚了无数文人墨客的才情与智慧。而在《诗详情
王勃,唐代初期的杰出诗人,以其才华横溢和短暂而传奇的一生著称。在他的众多诗作中,《晚留凤州》以其详情
《射雕英雄传》作为金庸先生的经典武侠小说,自问世以来便受到了广大读者的喜爱。在这部小说中,丘处机详情
在中国古代文化的历史长河中,《世说新语》以其独特的魅力记录了一个个鲜明的人物与故事。这部作品不仅详情
在道教传奇与神话故事中,赤脚大仙这一角色的形象虽短暂却极为鲜明,他在《西游记》中的出场更是令人印详情
在浩瀚的中华文化宝库中,斯斯文文这个词汇常被人们所提及。但是,它究竟是不是一个成语?它背后蕴含的详情
你知道时时刻刻这个成语吗?它不仅仅是描述时间的连续,更是一种对生活态度的诠释!那么,这个成语究竟详情
在汉语成语的宝库中,攘攘熙熙以其形象生动的描绘,捕捉了人类社会繁忙混杂的景象。这一成语不仅用法广详情
在隋末唐初的乱世之中,英雄豪杰辈出,各方势力纷争不断。李子通与伍云召,这两位人物虽有着不同的人生轨迹,却因时代的动荡产生了交集,共同谱写了一段传奇故事。 一、李子通:农民起义领袖的崛起与兴衰 李子通,东海郡丞县(今山东省峄县)人,出身贫寒,年