原子力显微镜,又叫做扫描力显微镜,是一种纳米级高分辨的扫描探针显微镜,外文名叫做atomic force microscope,简称AFM,第一台原子力显微镜发明于1986年,商用量产是在1989年。
工作原理

原子力显微镜的原理示意图: Detector and Feedback Electronics 侦检器及回馈电路; Photodiode 感光二极管; Laser激光; Sample Surface 样品表面; Cantilever & Tip 微悬臂及探针; PZT Scanner压电扫描器
AFM的关键组成部分是一个头上带有一个用来扫描样品表面的尖细探针的微观悬臂。这种悬臂大小在数十至数百微米,通常由硅或者氮化硅构成,其上载有探针,探针之尖端的曲率半径则在纳米量级。当探针被放置到样品表面附近的地方时,悬臂上的探针头会因为受到样品表面的力而遵从胡克定律弯曲偏移。在不同的情况下,这种被AFM测量到的力可能是机械接触力、范德华力、毛吸力、化学键、取向力、静电力、磁力(见磁力显微镜)卡西米尔效应力、溶剂力等等。通常,偏移会由射在微悬臂上的激光束反射至光敏二极管阵列而测量到,较薄之悬臂表面常镀上反光材质( 如铝)以增强其反射。其他方法还包括光学干涉法、电容法和压电效应法。这些探头通常由采用压电效应的变形测量器而制得。通过惠斯登电桥,探头的形变可以被测得,不过这种方法没有激光反射法或干涉法灵敏。
当在恒定高度扫描时,探头很有可能撞到表面的造成损伤。所以通常会通过反馈系统来维持探头与样品片表面的高度恒定。传统上,样品被放在压电管上并可以在z方向上移动以保持与探头之间的恒定距离,在x、y方向上移动来实现扫描。或者采用一种“三脚架”技术,在三个方向上实现扫描,这种方法部分抑制了压电管扫描时所产生的扭曲效应。在较新的设计中,探针被装载在垂直压电扫描器上,而样品则用另外的压电结来扫描X和Y方向。扫描的结果 z = f(x,y) 就是样品的形貌图。
AFM可以在不同模式下运行。这些模式可以被分为静态模式(Static Mode,也称接触模式,Contact Mode),或其他一系列动态模式(Dynamic Mode,如非接触模式(Non-Contact Mode)、轻敲模式(Tapping Mode)、侧向力(Lateral Force Mode)模式)。
成像模式
原子力显微镜的主要工作模式有静态模式和动态模式两种。在静态模式中,悬臂从样品表面划过,从悬臂的偏转可以直接得知表面的高度图。在动态模式中,悬臂在其基频或谐波或附近振动,而其振幅、相位和共振与探针和样品间的作用力相关,这些参数相对外部参考的振动的改变可得出样品的性质。
接触模式
在静态模式中,静态探针偏转用做反馈信号。因为静态信号的测试与噪音和偏移成正比,低硬度探针用来增强外偏转信号。然而,因为探针非常接近于样品的表面,吸引力非常强导致探针切入样品表面。因此静态原子力显微镜几乎都用在总使用力为排斥力的情况。结果,这种技术经常被叫做“接触模式”。在接触模式中,扫描过程时保持探针偏转不变来使其探针和样品表面的作用力保持恒定。
非接触模式

原子力显微镜非接触模式
在这种模式下,悬臂上的探针并不接触样品表面,而是以比其共振频率略高的频率振动,振幅通常小于几纳米。范德华力在探针距离表面样品1~3纳米时最强,它与其他在表面上的长程力会降低悬臂的振动频率。通过调整探针与样品间的平均距离,频率的降低与反馈回路一起保持不变的振动频率或振幅。测量(x,y)每个数据点上的探针与样品间的距离即可让扫描软件构建出样品表面的形貌。
在接触模式下扫描数次通常会伤害样品和探针,但非接触模式则不会,这个特点使得非接触模式通常用来测试柔软的样品,如生物组织和有机薄膜;而对于坚硬样品,两个模式得到的图像几乎一样。然而,如果在坚硬样品上裹有一层薄膜或吸附有流体,两者的成像则差别很大。接触模式下探针会穿过液体层从而成像其下的表面,非接触模式下则探针只在吸附的液体层上振动,成像信息是液体和下表面之和。
动态模式下的成像包括频率调制和更广泛使用的振幅调制。频率调制中,振动频率的变化提供探针和样品间距的信息。频率可以被非常灵敏地测量,因此频率调制使用非常坚硬的悬臂,因其在非常靠近表面时仍然保持很稳定;因此这种技术是第一种在超高真空条件下获得原子级分辨率的原子力显微镜技术。 振幅调制中,悬臂振幅和相位的变化提供了图像的反馈信号,而且相位的变化可用来检测表面的不同材料。 振幅调制可用在非接触模式和间歇接触领情况。在动态接触模式中,悬臂是振动的,以至悬臂振动悬臂探针和样品表面的间距是调制的。振幅调制也用于非接触模式中,用来在超高真空条件下使用非常坚硬的悬臂和很小的振幅来得到原子级分辨率。
轻敲模式

在不同的pH的溶液环境中使用轻敲模式得到的高分子单链的原子力显微镜图(0.4 nm 厚)
通常情况下,绝大部分样品表面都有一层弯曲液面,为此非接触模式下使探针足够靠近样品表面从而可以测试短程力,但是此时探针又容易粘贴到样品表面,这是经常发生的大问题;动态模式就是为了避免此问题而发明的,又叫做 间歇接触模式 (intermittent contact)、 轻敲模式 (tapping mode)或AC模式(AC Mode)。 在 轻敲模式 中,悬臂通过类似于非接触下的装载在探针上的微小的压电元件做来上下振动,频率在其共振频率附近,然而振幅则远大于10纳米,大概在100~200纳米间。当探针越靠近样品表面时,探针和样品表面间的范德华力、偶极偶极作用和静电力等作用力会导致振幅越来越小。电子自动伺服机通过压电制动器来控制悬臂和探针间的距离,当悬臂扫描样品表面时,伺服机会调整探针和样品间距来保持悬臂的预设的振幅,而成像相互作用力则得到原子力显微镜轻敲模式图像。 轻敲模式减少了接触模式中对样品和探针和损伤,它是如此的温和以致于可以成像固定的磷脂双分子层和吸附的单个高分子链。比如液相的0.4纳米厚的合成聚合物电解质,在合适的扫描条件下,单分子实验可以在几小时内保持稳定。
优点与缺点
相对于扫描电子显微镜,原子力显微镜具有许多优点。不同于电子显微镜只能提供二维图像,AFM提供真正的三维表面图。同时,AFM不需要对样品的任何特殊处理,如镀铜或碳,这种处理对样品会造成不可逆转的伤害。第三,电子显微镜需要运行在高真空条件下,原子力显微镜在常压下甚至在液体环境下都可以良好工作。这样可以用来研究生物宏观分子,甚至活的生物组织。他就像盲人摸象一样,在物体的表面慢慢抚摸,原子的形状很直观的表现。
和扫描电子显微镜相比,AFM的缺点在于成像范围太小,速度慢,受探头的影响太大。

在中国历史的长河中,北魏冯太后以其卓越的政治智慧与果敢的改革精神,成为南北朝时期最具影响力的女性详情

在唐朝永徽年间的深宫中,一场关于权力与情感的博弈悄然展开。唐高宗李治在王皇后与武则天之间摇摆,最详情

公元前225年,秦国名将李信率领20万大军南下灭楚,却在淮水流域遭遇惨败,七名都尉阵亡,秦军几乎详情

公元1393年,大明王朝的朝堂被一场血雨腥风笼罩。开国名将蓝玉以谋反罪名被处以剥皮实草之刑,其家详情

公元690年,武则天以67岁高龄登基称帝,改国号为周,成为中国历史上唯一正统女皇帝。这场突破性别详情

公元710年,唐隆政变以李隆基与太平公主联手诛杀韦后集团告终。这场政变不仅让李唐江山重归李氏,更详情

明成祖朱棣(1360-1424)作为中国历史上最具争议的帝王之一,其"永乐盛世&quo详情

在三国乱世中,西北战场的硝烟始终未散。作为曹魏西线最高统帅,夏侯渊与西凉悍将马超的多次交锋,不仅详情

东汉末年,汜水关下,一场改变历史进程的战斗悄然展开。十八路诸侯联军讨伐董卓,却被其麾下猛将华雄连详情

公元713年,长安城内暗流涌动。唐玄宗李隆基以雷霆手段发动先天政变,将权倾朝野的姑姑太平公主赐死详情

公元249年正月初六,曹魏帝国上演了一场决定历史走向的政变——高平陵之变。当司马懿以郭太后名义封详情

在五代十国的乱世中,陶谷以文翰冠绝一时的才华与倾险狠媚的处世之道,在政权更迭中屡次押注成功,却因详情

在中国浩瀚的历史长河中,羊献容的名字或许并不如武则天、吕后那般如雷贯耳,但她的人生轨迹却如同一部详情

1435年寒冬,九岁的朱祁镇在紫禁城乾清宫接过玉玺,成为明朝第六位皇帝。此时的大明王朝,外有蒙古详情

在三国纷争的宏大叙事中,吴懿以其独特的政治身份与军事才能,成为蜀汉政权中不可忽视的存在。这位出身详情

公元1457年正月十六日夜,北京城被一场突如其来的政变撕裂。石亨、徐有贞、曹吉祥等人率领千余士兵详情

五代十国至北宋初年的动荡岁月里,王彦超以七十二载军旅生涯,在二十七次重大战役中书写传奇。这位历经详情

北宋政坛与文坛交汇处,曾巩以"南丰先生"之名,既在地方治理中践行"详情

元末明初的政坛暗流涌动,被后世誉为"诸葛亮再世"的刘伯温,却在功成名就之际两详情

北宋文坛星河璀璨,曾巩以南丰先生之名位列唐宋八大家,其一生跨越文学革新与教育实践两大领域,既以古详情

东汉末年,徐州牧陶谦手握天下精兵丹阳兵,坐拥五郡之地,粮食储备丰盈,曾让曹操、袁术等枭雄忌惮三分详情

公元220年,关羽败走麦城身死,荆州落入东吴之手。次年,刘备以为弟报仇为名,倾全国之力发动夷陵之详情

公元222年,三国时期规模最大的战役之一——夷陵之战爆发。蜀汉昭烈帝刘备亲率五万大军东征,意图为详情

在华夏文明起源的宏大叙事中,阪泉之战与涿鹿之战犹如两枚关键拼图,共同构建起炎黄部落联盟的崛起图景详情

公元前273年,战国中期的中原大地战火纷飞。在韩国华阳(今河南新郑北)的战场上,一场改变战国格局详情

在中国历史的长河中,三国鼎立的局面持续了数十年,魏、蜀、吴三国相互征伐,战火纷飞。而最终打破这一详情

1521年,明朝广东海道副使汪鋐指挥的屯门海战,是中国与西方殖民者的首次军事对抗。这场战役虽以明详情

在云南西部高黎贡山南麓的崇山峻岭间,一座名为磨盘山的险峻山岭静默矗立。这座海拔2600余米的山峰详情

公元215年的合肥城下,一场被后世神话为"八百破十万"的战役,实则是三国时期详情

在探讨中国古代军事史时,"淝水之战"作为以少胜多的经典战例广为人知,但&qu详情

《左传》作为一部叙事详实的史书,以其高超的叙事技巧和深刻的历史洞察力,为后人展现了春秋时期诸多重详情

在历史的长河中,北方草原上的游牧民族乌桓,曾是汉朝边疆的重要力量。然而,随着东汉末年的局势动荡,详情

在中国古代历史的长河中,秦朝的统一战争无疑是一段波澜壮阔的篇章。然而,在这场规模空前的征服之战中详情

在科学的世界里,有一种细胞被赋予了不死的名号,这就是海拉细胞。这种细胞源自于一位名叫亨丽埃塔·拉详情

在中国古代的神话传说中,姜子牙和鬼谷子都是极具智慧和能力的传奇人物。他们分别代表了道家和兵家的智详情

一、背景介绍 秦始皇陵兵马俑是中国历史上最著名的考古发现之一,被誉为世界第八大奇迹。然而,这些详情

标题:秦始皇10大诡异事件 一、陵墓之谜 1. 兵马俑:秦始皇陵的兵马俑被认为是世界上最大的详情

虞姬,中国历史上著名的女性人物,她与项羽的爱情故事被后人传颂不衰。而刘邦,作为项羽的对手和汉朝的详情

胤祥没有遭到雍正的清洗,但他在年轻时去世,这一点对于一些历史学家来说存在着一些争议。 一些人质详情

满清十二帝内没有溥仪的画像,只有照片,是什么原因呢? 在满清十二帝中,没有任何一位皇帝画过溥仪详情

溥仪的文化水平不仅仅是初中程度,尽管他的户口本上写着初中,但这并不是他真实的文化水平。 作为大详情

古人常说不孝有三,无后为大,而在皇权社会,皇帝不具备生育能力,可不仅仅是不孝的问题,毕竟古代历来详情

息肌丸是什么东西?真的有这种药存在吗?息肌丸是一种有催情作用的美容香精,塞到肚脐眼里融化到体内,详情

赵飞燕服用息肌丸保持美貌,息肌丸是什么东西呢?感兴趣的读者可以跟着趣历史小编一起往下看。 据说详情

古印度文明,作为人类文明的摇篮之一,承载着丰富的文化遗产和深邃的哲学思想。其影响力不仅深远地渗透到了详情

彼岸花,又称曼珠沙华,是一种充满神秘色彩的花卉。这种花通常盛开在秋季,其鲜红的花瓣和细长的花蕊形详情

在现代社会,我们依赖于各种产品来完成日常生活的各个方面。从智能手机到笔记本电脑,从家用电器到汽车详情

在我们的日常生活中,我们常常会忽视地球上的一些奇妙之处。然而,当我们从太空中俯瞰地球时,这些事物详情

在生物多样性的广阔领域中,每一次新的物种发现都像是打开了一扇通向未知世界的窗户。最近,科学家们在详情

在这个世界上,有些物品的价值超越了我们的想象。它们不仅仅是物质的存在,更是艺术、历史和文化的象征详情

在世界的每一个角落,无论是热血沸腾的球场,还是电视机前的粉丝,都被一位女性棒球选手的魅力所吸引。详情

位于中国云南的九龙河瀑布群,被誉为中国的尼亚加拉,是中国最大的瀑布群。这里的瀑布高低错落,气势磅详情

北仑河口,位于中国浙江省宁波市北仑区,是中国大陆海岸线的最南点。这里既有美丽的海滨风光,也有丰富详情

鸭绿江口,位于中国东北地区,是中国大陆海岸线的最北点。这里既有壮丽的山川河流,也有悠久的历史文化详情

湖北省,位于中国中部,素有千湖之省的美誉。全省湖泊众多,水域面积占总面积的四分之一。今天,就让我详情

在武侠文化的语境中,实力往往与武功修为、江湖地位、智谋韬略紧密相连,而当我们将虚构角色殷野王与现详情

在唐代诗坛的苍茫雪原中,刘长卿以五言绝句《逢雪宿芙蓉山主人》凿出一眼温热的清泉。这首诞生于贬谪途详情

在《红楼梦》这部文学巨著中,妙玉无疑是一个极具神秘色彩和独特魅力的人物。她以超凡脱俗的才情、孤傲详情

在中国悠久的历史长河中,涌现出了无数才华横溢的诗人,他们用优美的诗句抒发了对人生、爱情、自然和社详情

在中国古代文学的璀璨星河中,《诗经》犹如一颗耀眼的明珠,汇聚了无数文人墨客的才情与智慧。而在《诗详情

王勃,唐代初期的杰出诗人,以其才华横溢和短暂而传奇的一生著称。在他的众多诗作中,《晚留凤州》以其详情

《射雕英雄传》作为金庸先生的经典武侠小说,自问世以来便受到了广大读者的喜爱。在这部小说中,丘处机详情

在中国古代文化的历史长河中,《世说新语》以其独特的魅力记录了一个个鲜明的人物与故事。这部作品不仅详情

在道教传奇与神话故事中,赤脚大仙这一角色的形象虽短暂却极为鲜明,他在《西游记》中的出场更是令人印详情

在浩瀚的中华文化宝库中,斯斯文文这个词汇常被人们所提及。但是,它究竟是不是一个成语?它背后蕴含的详情

你知道时时刻刻这个成语吗?它不仅仅是描述时间的连续,更是一种对生活态度的诠释!那么,这个成语究竟详情

在中国历史的长河中,北魏冯太后以其卓越的政治智慧与果敢的改革精神,成为南北朝时期最具影响力的女性政治家之一。她的一生,既是个人奋斗的传奇,也是北魏王朝从游牧政权向封建化国家转型的缩影。从罪臣之女到两度临朝称制的无冕女皇,冯太后以铁血手腕推动改革,