超导现象一般指的是超导,导体在某一温度下,电阻为零的状态,外文名叫做superconductivity,时间1911年,性能是低温下失去电阻,应用领域在电子电气、材料科学等。
超导体的基本特性

关于超导材料转变时比热(c v )与电阻率(ρ)变化关系的图像
超导现象是指材料在低于某一温度时,电阻变为零(以目前观测,即使有,也小至10 欧姆·平方毫米/米以下)的现象,而这一温度称为超导转变温度(T c )。超导现象的特征是零电阻和完全抗磁性。
金属导体的电阻会随着温度降低而逐渐减少。然而,对于普通导体如铜和银,即使接近绝对零度时,仍然保有最低的电阻值,这是纯度和其他缺陷的影响所致。另一方面,超导体的电阻值在低于其"临界温度"时,一般出现在绝对温度20 K或更低时会骤降为零。在超导体线材里面的电流能够不断地持续而不需提供电能。如同磁性和原子能谱等现象,超导特性也是种量子效应。这种性质无法单纯靠传统物理学中理想化的“全导特性”来理解。
超导现象可在各种不同的材料上发生,包括单纯的元素如锡和铝,各种金属合金和一些经过布涂的半导体材料。超导现象不会发生在贵金属像是金和银,也不会发生在大部分的磁性金属上。
在1986年发现的铜氧钙钛陶瓷材料等系列,即所谓的 高温超导体 ,具有临界温度超过90K的特质,基于各种因素促使学界又再度燃起研究的兴趣。对于纯研究的领域而言,这些材质呈现一种现象是当时BCS理论所无法解释的。(依BCS理论,当温度超过39K,库珀对会不稳定而无法维持超导状态。)而且,因为这种超导状态可在较容易达成的温度下进行,尤其若能发现具备更高临界温度的材料时,则更能实现于业界应用。
超导体的分类
超导体的分类没有唯一的标准,最常用的分类如下:
由物理性质分类 :可分成第一类超导体和第二类超导体。
由超导理论来分类 :可分成传统超导体(若超导机制可用BCS理论解释)和非传统超导体(若超导机制不能用BCS理论解释)。
由超导相变温度来分类 :可分成高温超导体(若可用液态氮冷却就形成超导体)和 低温超导体 (若需要其他技术来冷却)。
由材料来分类 :它们可以是化学元素(如汞和铅)、合金(如铌钛合金和铌锗合金)、陶瓷(如钇钡铜氧和二硼化镁)或有机超导体(如富勒烯和碳纳米管,这可能都包括在化学元素之内,因为它们是由碳组成)。
发现
1908年,荷兰物理学家海克·卡末林·昂内斯成功将氦气液化,随后在1911年春,昂内斯在用液氦将汞的温度降到4.15 K时,发现汞的电阻降为零 。他把这种现象称为超导性。后来昂内斯和其他科学家陆续发现其他一些金属也是超导体。昂内斯因为对生产液氦的贡献以及发现超导现象而获得1913年的诺贝尔物理学奖。
完全抗磁性
1933年,德国物理学家瓦尔特·迈斯纳(Walther Meissner)和罗伯特·奥克森菲尔德(Robert Ochsenfeld) 发现了超导体的完全抗磁性,即当超导体处于超导状态时,超导体内部磁场为零,对磁场完全排斥,即迈斯纳效应。但当外部磁场大于临界值时,超导性被破坏 。
原理
伦敦方程
解释超导现象最早的理论是由弗里茨·伦敦和海因茨·伦敦兄弟在1935年提出的伦敦方程 。这套方程基于经典电磁学理论并能有效的解释迈斯纳效应。根据伦敦方程,超导体内部的电场 E 以及磁场 B 可以表述为以下关系(高斯单位制cgs):
∂ ∂ --> j s ∂ ∂ --> t = n s e 2 m E , ∇ ∇ --> × × --> j s = − − --> n s e 2 m B . {⁄displaystyle {⁄frac {⁄partial ⁄mathbf {j} _{s}}{⁄partial t}}={⁄frac {n_{s}e^{2}}{m}}⁄mathbf {E} ,⁄qquad ⁄mathbf {⁄nabla } ⁄times ⁄mathbf {j} _{s}=-{⁄frac {n_{s}e^{2}}{m}}⁄mathbf {B} .}
第一个方程说明了超导体零电阻,即无穷大电导的特性,第二个方程结合麦克斯韦方程组可以推导出磁场只能穿透超导体的表面,这个穿透深度称之为伦敦穿透深度,超导体内部的磁场则为零,即是迈斯纳效应。
BCS理论
1957年,美国物理学家约翰·巴丁、利昂·库珀、约翰·施里弗提出了以他们名字首字母命名的BCS理论 ,用于解释超导现象的微观机理。BCS理论认为:晶格的振动,称为声子(Phonon),使自旋和动量都相反的两个电子组成动量为零、总自旋为零的库珀对,称为电声子相互作用。由于库珀对的总自旋为零,适用量子统计力学中波色子的理论,库珀对如同超流体可以绕过晶格缺陷杂质流动从而无阻碍地形成超导电流。巴丁、库珀、施里弗因此获得1972年的诺贝尔物理学奖。 不过,BCS理论并无法成功的解释所谓 非常规超导体 ( 英语 : Unconventional superconductor ) ,或高温超导的现象。
高温超导体

超导临界温度时间线 1900 to 2015
自1911年发现超导现象的很长一段时间内,物理学家认为超导的上限温度不会超过30 K。后来发现的超导临界温度高于30 K的都被称为高温超导体。1953年,科学家发现了合金超导体硅化钒 。1986年1月,德国科学家约翰内斯·贝德诺尔茨和瑞士科学家卡尔·米勒发现陶瓷性金属氧化物可以作为超导体 ,开启了铜基高温超导体的时代,从而获得了1987年诺贝尔物理学奖。1987年,美国华裔科学家朱经武与台湾物理学家吴茂昆以及大陆科学家赵忠贤相继在钇-钡-铜-氧系材料上把临界超导温度提高到90K以上,液氮的“温度壁垒”(77K)也被突破了 。1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K。从1986年-1987年的短短一年多的时间里,临界超导温度提高了近100K。大约1993年,铊-汞-铜-钡-钙-氧系材料又把临界超导温度的记录提高到138K 。
2008 年,东京工业大学的细野秀雄(Hideo Hosono)与其合作者发现了新的一类铁基超导体LaO 1-x F x FeAs(超导临界温度26 K) 。随后,铁基超导体的超导临界温度很快被提高到55 K 。2012年,清华大学的薛其坤及起合作者发现生长在SrTiO3衬底上的单原子层FeSe具有高于77 K的超导临界温度 ,这也是目前铁基超导体的最高超导临界温度记录。
铜基超导体和铁基超导体都是非传统超导体,即是非BCS超导体,电子声子耦合不能解释这两个体系的超导现象,目前还没有统一的理论来解释这两类非传统超导体。
2015年,物理学者发现,硫化氢在极度高压的环境下(至少150GPa,也就是约150万标准大气压),约于温度203K (-70 °C)时会发生超导相变,是目前已知最高温度的超导体。 非常有趣的是,硫化氢属于传统BCS超导体,这一发现也重新开拓了传统超导体的新领域。
参见
超导材料
高温超导
铁磁超导体
铁基超导体

在中国历史的长河中,北魏冯太后以其卓越的政治智慧与果敢的改革精神,成为南北朝时期最具影响力的女性详情

在唐朝永徽年间的深宫中,一场关于权力与情感的博弈悄然展开。唐高宗李治在王皇后与武则天之间摇摆,最详情

公元前225年,秦国名将李信率领20万大军南下灭楚,却在淮水流域遭遇惨败,七名都尉阵亡,秦军几乎详情

公元1393年,大明王朝的朝堂被一场血雨腥风笼罩。开国名将蓝玉以谋反罪名被处以剥皮实草之刑,其家详情

公元690年,武则天以67岁高龄登基称帝,改国号为周,成为中国历史上唯一正统女皇帝。这场突破性别详情

公元710年,唐隆政变以李隆基与太平公主联手诛杀韦后集团告终。这场政变不仅让李唐江山重归李氏,更详情

明成祖朱棣(1360-1424)作为中国历史上最具争议的帝王之一,其"永乐盛世&quo详情

在三国乱世中,西北战场的硝烟始终未散。作为曹魏西线最高统帅,夏侯渊与西凉悍将马超的多次交锋,不仅详情

东汉末年,汜水关下,一场改变历史进程的战斗悄然展开。十八路诸侯联军讨伐董卓,却被其麾下猛将华雄连详情

公元713年,长安城内暗流涌动。唐玄宗李隆基以雷霆手段发动先天政变,将权倾朝野的姑姑太平公主赐死详情

公元249年正月初六,曹魏帝国上演了一场决定历史走向的政变——高平陵之变。当司马懿以郭太后名义封详情

在五代十国的乱世中,陶谷以文翰冠绝一时的才华与倾险狠媚的处世之道,在政权更迭中屡次押注成功,却因详情

在中国浩瀚的历史长河中,羊献容的名字或许并不如武则天、吕后那般如雷贯耳,但她的人生轨迹却如同一部详情

1435年寒冬,九岁的朱祁镇在紫禁城乾清宫接过玉玺,成为明朝第六位皇帝。此时的大明王朝,外有蒙古详情

在三国纷争的宏大叙事中,吴懿以其独特的政治身份与军事才能,成为蜀汉政权中不可忽视的存在。这位出身详情

公元1457年正月十六日夜,北京城被一场突如其来的政变撕裂。石亨、徐有贞、曹吉祥等人率领千余士兵详情

五代十国至北宋初年的动荡岁月里,王彦超以七十二载军旅生涯,在二十七次重大战役中书写传奇。这位历经详情

北宋政坛与文坛交汇处,曾巩以"南丰先生"之名,既在地方治理中践行"详情

元末明初的政坛暗流涌动,被后世誉为"诸葛亮再世"的刘伯温,却在功成名就之际两详情

北宋文坛星河璀璨,曾巩以南丰先生之名位列唐宋八大家,其一生跨越文学革新与教育实践两大领域,既以古详情

东汉末年,徐州牧陶谦手握天下精兵丹阳兵,坐拥五郡之地,粮食储备丰盈,曾让曹操、袁术等枭雄忌惮三分详情

公元220年,关羽败走麦城身死,荆州落入东吴之手。次年,刘备以为弟报仇为名,倾全国之力发动夷陵之详情

公元222年,三国时期规模最大的战役之一——夷陵之战爆发。蜀汉昭烈帝刘备亲率五万大军东征,意图为详情

在华夏文明起源的宏大叙事中,阪泉之战与涿鹿之战犹如两枚关键拼图,共同构建起炎黄部落联盟的崛起图景详情

公元前273年,战国中期的中原大地战火纷飞。在韩国华阳(今河南新郑北)的战场上,一场改变战国格局详情

在中国历史的长河中,三国鼎立的局面持续了数十年,魏、蜀、吴三国相互征伐,战火纷飞。而最终打破这一详情

1521年,明朝广东海道副使汪鋐指挥的屯门海战,是中国与西方殖民者的首次军事对抗。这场战役虽以明详情

在云南西部高黎贡山南麓的崇山峻岭间,一座名为磨盘山的险峻山岭静默矗立。这座海拔2600余米的山峰详情

公元215年的合肥城下,一场被后世神话为"八百破十万"的战役,实则是三国时期详情

在探讨中国古代军事史时,"淝水之战"作为以少胜多的经典战例广为人知,但&qu详情

《左传》作为一部叙事详实的史书,以其高超的叙事技巧和深刻的历史洞察力,为后人展现了春秋时期诸多重详情

在历史的长河中,北方草原上的游牧民族乌桓,曾是汉朝边疆的重要力量。然而,随着东汉末年的局势动荡,详情

在中国古代历史的长河中,秦朝的统一战争无疑是一段波澜壮阔的篇章。然而,在这场规模空前的征服之战中详情

在科学的世界里,有一种细胞被赋予了不死的名号,这就是海拉细胞。这种细胞源自于一位名叫亨丽埃塔·拉详情

在中国古代的神话传说中,姜子牙和鬼谷子都是极具智慧和能力的传奇人物。他们分别代表了道家和兵家的智详情

一、背景介绍 秦始皇陵兵马俑是中国历史上最著名的考古发现之一,被誉为世界第八大奇迹。然而,这些详情

标题:秦始皇10大诡异事件 一、陵墓之谜 1. 兵马俑:秦始皇陵的兵马俑被认为是世界上最大的详情

虞姬,中国历史上著名的女性人物,她与项羽的爱情故事被后人传颂不衰。而刘邦,作为项羽的对手和汉朝的详情

胤祥没有遭到雍正的清洗,但他在年轻时去世,这一点对于一些历史学家来说存在着一些争议。 一些人质详情

满清十二帝内没有溥仪的画像,只有照片,是什么原因呢? 在满清十二帝中,没有任何一位皇帝画过溥仪详情

溥仪的文化水平不仅仅是初中程度,尽管他的户口本上写着初中,但这并不是他真实的文化水平。 作为大详情

古人常说不孝有三,无后为大,而在皇权社会,皇帝不具备生育能力,可不仅仅是不孝的问题,毕竟古代历来详情

息肌丸是什么东西?真的有这种药存在吗?息肌丸是一种有催情作用的美容香精,塞到肚脐眼里融化到体内,详情

赵飞燕服用息肌丸保持美貌,息肌丸是什么东西呢?感兴趣的读者可以跟着趣历史小编一起往下看。 据说详情

古印度文明,作为人类文明的摇篮之一,承载着丰富的文化遗产和深邃的哲学思想。其影响力不仅深远地渗透到了详情

彼岸花,又称曼珠沙华,是一种充满神秘色彩的花卉。这种花通常盛开在秋季,其鲜红的花瓣和细长的花蕊形详情

在现代社会,我们依赖于各种产品来完成日常生活的各个方面。从智能手机到笔记本电脑,从家用电器到汽车详情

在我们的日常生活中,我们常常会忽视地球上的一些奇妙之处。然而,当我们从太空中俯瞰地球时,这些事物详情

在生物多样性的广阔领域中,每一次新的物种发现都像是打开了一扇通向未知世界的窗户。最近,科学家们在详情

在这个世界上,有些物品的价值超越了我们的想象。它们不仅仅是物质的存在,更是艺术、历史和文化的象征详情

在世界的每一个角落,无论是热血沸腾的球场,还是电视机前的粉丝,都被一位女性棒球选手的魅力所吸引。详情

位于中国云南的九龙河瀑布群,被誉为中国的尼亚加拉,是中国最大的瀑布群。这里的瀑布高低错落,气势磅详情

北仑河口,位于中国浙江省宁波市北仑区,是中国大陆海岸线的最南点。这里既有美丽的海滨风光,也有丰富详情

鸭绿江口,位于中国东北地区,是中国大陆海岸线的最北点。这里既有壮丽的山川河流,也有悠久的历史文化详情

湖北省,位于中国中部,素有千湖之省的美誉。全省湖泊众多,水域面积占总面积的四分之一。今天,就让我详情

在武侠文化的语境中,实力往往与武功修为、江湖地位、智谋韬略紧密相连,而当我们将虚构角色殷野王与现详情

在唐代诗坛的苍茫雪原中,刘长卿以五言绝句《逢雪宿芙蓉山主人》凿出一眼温热的清泉。这首诞生于贬谪途详情

在《红楼梦》这部文学巨著中,妙玉无疑是一个极具神秘色彩和独特魅力的人物。她以超凡脱俗的才情、孤傲详情

在中国悠久的历史长河中,涌现出了无数才华横溢的诗人,他们用优美的诗句抒发了对人生、爱情、自然和社详情

在中国古代文学的璀璨星河中,《诗经》犹如一颗耀眼的明珠,汇聚了无数文人墨客的才情与智慧。而在《诗详情

王勃,唐代初期的杰出诗人,以其才华横溢和短暂而传奇的一生著称。在他的众多诗作中,《晚留凤州》以其详情

《射雕英雄传》作为金庸先生的经典武侠小说,自问世以来便受到了广大读者的喜爱。在这部小说中,丘处机详情

在中国古代文化的历史长河中,《世说新语》以其独特的魅力记录了一个个鲜明的人物与故事。这部作品不仅详情

在道教传奇与神话故事中,赤脚大仙这一角色的形象虽短暂却极为鲜明,他在《西游记》中的出场更是令人印详情

在浩瀚的中华文化宝库中,斯斯文文这个词汇常被人们所提及。但是,它究竟是不是一个成语?它背后蕴含的详情

你知道时时刻刻这个成语吗?它不仅仅是描述时间的连续,更是一种对生活态度的诠释!那么,这个成语究竟详情

在中国历史的长河中,北魏冯太后以其卓越的政治智慧与果敢的改革精神,成为南北朝时期最具影响力的女性政治家之一。她的一生,既是个人奋斗的传奇,也是北魏王朝从游牧政权向封建化国家转型的缩影。从罪臣之女到两度临朝称制的无冕女皇,冯太后以铁血手腕推动改革,