马克斯·普朗克,德国著名物理学家,量子力学的重要创始人之一,原名叫做马克斯·卡尔·恩斯特·路德维希·普朗克,生卒时间1858年4月23日—1947年10月4日。
生平
童年时期
普朗克出生在一个受到良好教育的传统家庭,他的曾祖父戈特利布·普朗克(Gottlieb Planck,1751年-1833年)和祖父海因里希·普朗克(Heinrich Planck,1785年-1831年)都是哥廷根的神学教授,他的父亲威廉·普朗克(Wilhelm Planck,1817年-1900年)是基尔和慕尼黑的法学教授,他的叔叔戈特利布·普朗克(Gottlieb Planck,1824年-1907年)也是哥廷根的法学家和德国民法典的重要创立者之一。
马克斯·普朗克10岁时的签名
马克斯·普朗克出生于1858年4月23日的基尔,是父亲的第二任妻子母亲埃玛·帕齐希(Emma Patzig,1821年-1914年)所生的,他受洗及赐名为卡尔·恩斯特·路德维希·马克思·普朗克,其赐名的名称简称为马克思,而马克斯也沿用此名直到他过世。而普朗克他还有另外六个兄弟姐妹,其中四个孩子赫尔曼(Hermann)、希尔德加德(Hildegard)、阿达尔贝特(Adalbert)和奥托(Otto)是父亲的第二任妻子所生的,而父亲的第一任妻子留下了两个孩子胡戈(Hugo)和埃玛(Emma)。
普朗克在基尔度过了他童年最初的几年时光,他最早的记忆便是1864年普丹战争期间,普鲁士奥地利联军进入基尔。1867年全家搬去了慕尼黑,普朗克在慕尼黑的马克西米利安文理中学(Maximiliansgymnasium)读书,在那里他受到数学家奥斯卡·冯·米勒(Oskar von Miller,后来成为了德意志博物馆的创始人)的启发,引起青年时期的马克斯发现自己对数理方面有兴趣。米勒也教他天文学、力学和数学,从米勒那普朗克也学到了生平第一个物理定律——能量守恒定律。之后普朗克在17岁时就完成了中学的学业,在这个学校学习的这段期间内,也是普朗克第一次接触物理学这个领域。
大学时期
1878年学生时代的普朗克。
普朗克十分具有音乐天赋,他会钢琴、管风琴和大提琴,还上过演唱课,曾在慕尼黑学生学者歌唱协会(Akademischer Gesangverein München)为多首歌曲和一部轻歌剧(1876年)作曲。但是普朗克并没有选择音乐作为他的大学专业,而是决定学习物理。
慕尼黑的物理学教授菲利普·冯·约利(Philipp von Jolly,1809年-1884年)曾劝说普朗克不要学习物理,他认为“这门科学中的一切都已经被研究了,只有一些不重要的空白需要被填补(德语原文: In dieser Wissenschaft schon fast alles erforscht sei, und es gelte, nur noch einige unbedeutende Lücken zu schließen. )”,这也是当时许多物理学家所坚持的观点,但是普朗克回复道:
普朗克在1874年在慕尼黑开始了他的物理学学业。普朗克整个科学事业中仅有的几次实验是在约利手下完成的,研究氢气在加热后的铂中的扩散,但是普朗克很快就把研究转向了理论物理学。
1877年至1878年,普朗克转学到柏林,在著名物理学家赫尔曼·冯·亥姆霍兹、古斯塔夫·罗伯特·基尔霍夫以及数学家卡尔·魏尔施特拉斯手下学习。关于亥姆霍兹,普朗克曾这样写道: “他上课前从来不好好准备,讲课时断时续,经常出现计算错误,让学生觉得上课很无聊。”(德语原文: nie richtig vorbereitet, spricht stockend, verrechnet sich ständig, langweilt seine Hörer. ) 而关于基尔霍夫,普朗克写道:“他讲课仔细,但是单调乏味。”(德语原文:sorgfältig ausgearbeitete Vorlesung, jedoch trocken und eintönig. )
即便如此,普朗克还是很快与亥姆霍兹建立了真挚的友谊。普朗克主要从鲁道夫·克劳修斯的讲义中自学,并受到这位热力学奠基人的重要影响,热学理论变成为了普朗克的工作领域。
1878年10月,普朗克在慕尼黑完成了教师资格考试,1879年2月递交了他的博士论文《关于热力学第二定律》( Über den zweiten Hauptsatz der mechanischen Wärmetheorie ),而后他暂时回到之前在慕尼黑所待的学校,并在那教数学及物理学。1880年6月以论文《各向同性物质在不同温度下的平衡态》( Gleichgewichtszustände isotroper Körper in verschiedenen Temperaturen )获得大学任教资格。
家庭婚姻
1887年3月,普朗克与一个慕尼黑中学同学的妹妹玛丽·梅尔克(Marie Merck,1861年-1909年)结婚,婚后生活在基尔的Wilhelminenstraße 43,共有4个孩子,分别叫做卡尔(Karl,1888年-1916年)、双胞胎埃玛(Emma,1889年-1919年)和格雷特(Grete,1889年-1917年)以及埃尔温(Erwin,1893年-1945年)。
在普朗克前往柏林工作后,全家住在柏林的一栋别墅(Berlin-Grunewald, Wangenheimstraße 21)中,与不计其数的柏林大学教授们为邻,普朗克的庄园发展成为了一个社交和音乐中心,许多知名的科学家如阿尔伯特·爱因斯坦、奥托·哈恩和莉泽·迈特纳等都是普朗克家的常客,而这种在家中演奏音乐的传统来自于亥姆霍兹家。
在度过了多年幸福的生活后,普朗克遇到了不幸,1909年10月17日普朗克的妻子去世了,其病因可能为结核病。1911年3月普朗克与他的第二任妻子玛格丽特·冯·赫斯林(Margarethe von Hößlin,1882年-1948年)结婚,同年12月普朗克的第三个儿子赫尔曼(Herrmann)也诞生于世了。
第一次世界大战期间,普朗克的大儿子卡尔死于凡尔登战役,二儿子埃尔温在1914年被法军俘虏,1917年女儿格雷特在产下第一个孩子时去世,她的丈夫娶了普朗克的另一个女儿埃玛,不幸的是埃玛在两年后同样死于生产。普朗克平静地经受了这些打击,格雷特和埃玛的孩子存活了下来,普朗克也为她们取名格雷特和埃玛,继承了她们各自母亲的名字,
1945年1月23日,普朗克的二儿子埃尔温·普朗克因参与暗杀希特勒未遂而被纳粹杀害,至此,普朗克与其第一任妻子所生的4个孩子全都去世。
第一次世界大战和魏玛共和国时期
在第一次世界大战爆发时,普朗克也没能独善其身,但他并不支持极端的民族主义,由于他的影响,由他担任四个常任主席之一的普鲁士科学院在1915年将奖项颁给了一项意大利的研究成果,虽然在当时的战争中意大利是德国的敌人。可是普朗克在臭名昭著的“93名知识分子的宣言”(德语原文: Manifest der 93 Intellektuellen )上签下了自己的名字,这是当时战争宣传的一部分,而爱因斯坦则坚持和平主义的态度,这点使他差点入狱,所幸他的瑞士国籍使他免受了牢狱之灾。此后1915年,普朗克在与洛伦兹多次碰面后,撤回了宣言中的部分内容,并于1916年签署声明反对德国的军国主义。
在一战后的动荡时期,享有德国物理学界的最高地位的普朗克,向他的同事们发出了“坚持到底,继续工作”(德语原文: Durchhalten und weiterarbeiten )的口号。1920年10月,他和弗里茨·哈勃创建了“德国科学临时学会”(Notgemeinschaft der Deutschen Wissenschaft),其目的是为陷入困境的科学研究提供资金支持,其中的大部分资助来自国外。同时,普朗克也在柏林的大学、普鲁士科学院、德国物理学会和威廉皇家学会(Kaiser-Wilhelm-Gesellschaft,即后来的马克斯·普朗克学会)等机构担任领导职务,在这样的情况下,普朗克很难再顾及到自己的科学研究。
普朗克加入了古斯塔夫·施特雷泽曼(1926年获诺贝尔和平奖)的德国人民党,该党的国内政策自由,而对外政策则相对保守。普朗克反对普选权,并认为纳粹独裁是“人民大众法治升华”(德语原文: Emporkommen der Herrschaft der Masse )的结果。
纳粹和第二次世界大战时期
1933年纳粹上台时普朗克74岁,对于在普鲁士传统下成长起来的普朗克来说,对国家的无条件忠诚是理所应当的,作为威廉皇家学会的主席,他在1933年7月14日上书内政部长威廉·弗利克(Wilhelm Frick,1877年-1946年),表示学会愿意投入到帝国的种族纯净研究中。国家权力的被滥用,使得普朗克身不由己地放弃了自己的立场,他目睹了许多犹太人朋友和同事们被驱逐出他们的工作岗位,并被羞辱,数以百计的科学家被迫离开了德国。普朗克再次尝试用“坚持到底,继续工作”的口号,请求正在考虑移民国外的科学家们不要离开德国,并成功说服了其中的部分人留在了德国。
奥托·哈恩曾问普朗克,是否可以召集一些有声望的德国教授,共同呼吁抵制对犹太人教授的不公正待遇,普朗克回答道:“如果您今天召集了30位教授,那么明天就会有另外150位来反对您,因为您这样做会让他们丢掉饭碗。”(德语原文: Wenn Sie heute 30 solcher Herren zusammenbringen, dann kommen morgen 150, die dagegen sprechen, weil sie die Stellen der anderen haben wollen .)而对于犹太人化学家弗里茨·哈勃受到了不公正待遇,普朗克则直接去找希特勒提出抗议,但是一无所获,哈勃最终于1934年死于流亡生活中,一年后普朗克以威廉皇家学会主席的身份,为哈勃举行了一次纪念活动。普朗克还竭尽全力,使得一些犹太人科学家能够在一段时间内在威廉皇家学会的研究所内继续工作。1936年,普朗克结束了威廉皇家学会主席的任期,在纳粹的威胁之下,他放弃参加连任的选举。
政治环境越来越恶劣,“德意志物理学”(Deutschen Physik)的代表人和帝国物理技术学院主席约翰尼斯·斯塔克在党卫军刊物上批评普朗克、阿诺·索末菲(1868年-1951年)和维尔纳·海森堡是“白种的犹太人”(德语原文: weiße Juden ),并抨击整个理论物理学界,《Hauptamt Wissenschaft》(科学总局)调查了普朗克的出身,发现他有着十六分之一的犹太人血统,这与他们本来的期望相距甚远。
1938年,为了庆祝普朗克的八十岁生日,德国物理学会将马克斯·普朗克奖章授予了一位法国物理学家路易·德布罗意,普朗克收到了约900份贺信,他一一作了回复。
1938年底,纳粹将学会的整个社会和政治生活统一化,即将公开和私人的生活统一化,普朗克辞职以表示抗议。虽然岁数已高,普朗克还是坚持前往各地演讲,其中就包括1937年的著名演讲“宗教和自然科学”(Religion und Naturwissenschaft)。1943年,普朗克还在阿尔卑斯山上攀登了数座三千多米的高山。
二战期间,由于柏林受到空袭,普朗克离开了柏林,他于1942年写道:“我突然萌发了这样的念头,要度过危机,一直活到重新崛起的转折点那天”(德语原文: Mir ist der brennende Wunsch gewachsen, die Krise durchzustehen und so lange zu leben, bis ich den Wendepunkt, den Anfang zu einem Aufstieg werde miterleben können )。1943年底普朗克在卡塞尔演讲期间借宿亲戚家,10月22日晚亲历了一次破坏性的空袭,普朗克亲眼见到亲戚被炸身亡。1944年2月,普朗克在柏林的家也在空袭中完全损毁。
普朗克的二儿子埃尔温·普朗克(Erwin Planck)因参与1944年暗杀希特勒的7月20日密谋案,1944年7月23日被逮捕并被关入盖世太保的总部,1944年10月23日人民法院判处他死刑,1945年1月23日被杀害。
在二战的最后几周内,普朗克和他的妻子陷入了盟军在易北河的进攻前线,二战结束后普朗克被送回了哥廷根。
晚年
二战结束后,在恩斯特·特尔朔(Ernst Telschow)的领导下,威廉皇家学会(Kaiser-Wilhelm-Gesellschaft )在哥廷根得到重建,由普朗克担任其委员会主席,1946年4月1日由从英国获释回国的奥托·哈恩接替。由于英国占领当局坚持要更换学会的名称,该学会于1946年9月11日改名马克斯·普朗克学会,普朗克被任命为名誉主席。
虽然受到越来越多的健康问题的困扰,普朗克仍旧前往各地进行巡回演讲。1946年7月,普朗克作为唯一一位被邀请的德国人,参加了皇家学会纪念牛顿诞辰300周年的庆典。
1947年10月4日,普朗克因跌倒和多次中风的后遗症而去世,终年89岁。
学术事业
获得大学任教资格后,普朗克在慕尼黑并没有得到专业界的重视,但他继续他在热理论领域的工作,提出了热动力学公式,却没有发觉这一公式在此前已由约西亚·吉布斯提出过。鲁道夫·克劳修斯所提出的“熵”的概念在普朗克的工作中处于中心位置。
1885年4月,基尔大学聘请普朗克担任理论物理学教授,年薪约2000马克,普朗克继续他对熵及其应用的研究,主要解决物理化学方面的问题,为阿伦尼乌斯的电解质电离理论提供了热力学解释,但却是矛盾的。在基尔这段时间,普朗克已经开始了对原子假说的深入研究。
1887年,哥廷根大学哲学系授奖给普朗克的专著《能量守恒原理》( Das Prinzip der Erhaltung der Energie ,1897年)。1889年4月,亥姆霍兹通知普朗克前往柏林,接手基尔霍夫的工作,1892年接手教职,年薪约6200马克。1894年,普朗克被选为普鲁士科学院(Preußische Akademie der Wissenschaften)的院士。1907年维也纳曾邀请普朗克前去接替路德维希·玻尔兹曼的教职,但他没有接受,而是留在了柏林,受到了柏林大学学生会的火炬游行队伍的感谢。
普朗克于1926年10月1日退休,他的继任者是薛定谔。
主要成就
普朗克辐射定律
1901年的普朗克。
大约是在1894年,普朗克开始把心力全部放在研究黑体辐射的问题上,他曾经受电力公司委托研究如何制造出消耗最少能量,但能产生最多光能的灯泡。这一问题也曾在1859年被基尔霍夫所提出:黑体在热力学平衡下的电磁辐射功率与辐射频率和黑体温度的关系。帝国物理技术学院(Physikalisch-Technischer Reichsanstalt)对这个问题进行了实验研究,但是经典物理学的瑞利-金斯定律无法解释高频率下的测量结果,但这定律却也创造了日后的紫外灾变,威廉·维恩给出了维恩位移定律,可以正确反映高频率下的结果,但却又无法符合低频率下的结果。这些定律之所以能发起有一小部分是普朗克的贡献,但大多数的教科书却都没有提到他。
普朗克在1899年就率先提出解决此问题的方法,叫做“基础无序原理”(principle of elementary disorder),并把瑞利-金斯定律和维恩位移定律这两条定律使用一种熵列式进行内插,由此发现了普朗克辐射定律,可以很好地描述测量结果,不久后,人们发现他的这项新理论是没有实验证据的,这也让普朗克他在当时感到稍稍的无奈。可是他并没有因此而气馁,反而修正了自己的方式,最后成功的推衍出著名的第一版普朗克黑体辐射定律,此定律是在描述由实验观察来的黑体辐射光谱呈现良好的状态,这一定律于1900年10月19日在德国物理学会上首次提出。也因为普朗克黑体辐射定律是第一个不包括能源量化以及统计力学的推论,故在发表的当下,也引起了许多人的反感。
不久后的1900年12月14日,普朗克得出了辐射定律的理论推论,其中他使用了此前曾被他所否定的奥地利物理学家路德维希·玻尔兹曼的统计力学,热力学第二定律的每个纯统计学观点都让普朗克感到厌恶。普朗克于会议上提出了能量量子化的假说:
其中 E 是能量, ν ν --> {\displaystyle u } 是频率,并引入了一个重要的物理常数 h ——普朗克常数,能量只能以不可分的能量元素(即量子)的形式向外辐射。这样的假说调和了经典物理学理论研究热辐射规律时遇到的矛盾。基于这样的假设,他并给出了黑体辐射的普朗克公式,圆满地解释了实验现象。这个成就揭开旧量子论与量子力学的序幕,因此12月14日成为了量子日,以作纪念。普朗克也因此获得1918年诺贝尔物理学奖。尽管在后来的时间里,普朗克一直试图将自己的理论纳入经典物理学的框架之下,但他仍被视为近代物理学的开拓者之一。
不过在当时,这一假说与玻尔兹曼的理论相比,可谓无足轻重。
如今这个与经典物理学相悖的假说被作为是量子物理学诞生的标志,和普朗克最大的科学成就。但是需要提及的是,玻尔兹曼于先前的大约1877年已经将一个物理学系统的能量级可以是不连续的作为其理论研究的前提条件。
在接下来的时间里,普朗克试图找到能量子的意义,但是毫无结果,他曾写道:
其他物理学家如瑞利、James Jeans(1877年—1946年)和亨德里克·洛伦兹在几年后仍将普朗克常数设为零,以便其不与经典物理学相悖,但是普朗克十分清楚,普朗克常数是一个不等于零的确切的数值。“Jeans的固执令我很费解,他就像是理论学界里的黑格尔,他本不该是这样的,观点与事实不相符时却越是要坚持。”(德语原文: Jeans' Hartnäckigkeit ist mir unverständlich – er ist das Beispiel eines Theoretikers, wie er nicht sein soll, dasselbe, was Hegel in der Philosophie war. Um so schlimmer für die Tatsachen, wenn sie nicht stimmen. )
相对论
1905年,当时尚完全不为人所知的爱因斯坦在科学杂志《Annalen der Physik》(物理学大事记)中发表了三篇开创性的论文,普朗克是少数很快发现爱因斯坦狭义相对论重要性的人之一,由于普朗克的影响力,相对论很快在德国内得到认可,普朗克自己也对狭义相对论的完成做出了重要的贡献。
除了相对论,爱因斯坦还对1887年由赫兹和威廉·哈尔瓦克斯(Wilhelm Hallwachs,1859年-1922年)发现,1902年由菲利普·莱纳德进一步研究的光电效应提出了光量子假说,但是这一假说却遭到了普朗克的反对,他并不准备放弃麦克斯韦的电动力学,
1910年,爱因斯坦指出低温下比热的不正常表现,是又一个无法用经典理论解释的现象,为了对这些有悖经典理论的现象寻求合理的解释,普朗克和能斯特于1911年在布鲁塞尔组织了第一次索尔维会议,在这次会议上,爱因斯坦终于说服了普朗克。
其间,普朗克成为柏林大学的校长,他将爱因斯坦请到了柏林,并在1914年为爱因斯坦设立了一个新的教授职位,他们很快便结下了很好的友谊。
量子力学
普朗克拒绝接受由玻尔、维尔纳·海森堡和泡利在20世纪20年代末提出的量子力学的哥本哈根诠释,同样反对哥本哈根诠释的还有薛定谔和马克斯·冯·劳厄,爱因斯坦此时也成为了保守派。普朗克认为海森堡的矩阵力学“令人厌恶”(德语原文: abscheulich ),而将薛定谔方程作为救世主。普朗克觉得波动力学将会使得他自己的量子理论很快成为多余,然而科学的真理没有顾及他的想法而继续被揭示,正像普朗克年轻时与老一辈科学家争论时所写的那样:
1926年,普朗克成为英国皇家学会会员,同时还担任了柏林威廉皇家学会(后来这个学会用他的名字更名为马克斯·普朗克学会)的主席。
荣誉
2马克硬币上的普朗克
1915年获Pour le Mérite科学和艺术勋章;
1918年获诺贝尔物理学奖;
1928年获德意志帝国雄鹰勋章(Adlerschild des Deutschen Reiches);
1929年与爱因斯坦共同获马克斯·普朗克奖章,该奖项由德国物理学会于该年创设;
获法兰克福大学、慕尼黑工业大学、罗斯托克大学、柏林工业大学、格拉茨大学、雅典大学、剑桥大学、伦敦大学和格拉斯哥大学荣誉博士学位;
1938年,第1069号小行星(1927年1月28日由德国天文学家马克斯·沃夫在海德堡发现)以普朗克的名字命名为Planckia,时年普朗克80岁;
1957年至1971年德国官方2马克硬币使用普朗克的肖像;
1983年德意志民主共和国发行一枚5马克纪念硬币,纪念普朗克诞辰125周年;
探测宇宙微波背景辐射的普朗克卫星。
如今有很多学校和大学以普朗克的名字命名。
著作
Max Planck: Über den zweiten Hauptsatz der Mechanischen Wärmetheorie
Max Planck: Vorlesungen über Thermodynamik.
Max Planck: Das Weltbild der neuen Physik
Max Planck: Der Kausalbegriff in der Physik
Max Planck: Das Wesen Des Lichts
Max Planck: Religion und Naturwissenschaft
Max Planck: Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum
Max Planck: UBER DIE GRENZSCHICHT VERDUNNTER ELEKTROLYTE
Max Planck: Zur elektromagnetischen Theorie der Dispersion in isotropen Nichtleitern
Max Planck: BEMERKUNG UBER DIE EMISSION VON SPEKTRALLINIEN
Max Planck: Die Theorie des Sättigungsgesetzes
Max Planck: Ueber die Erregung von Electricität und Wärme in Elektrolyten
Max Planck: Grundriss der Allgemeinen Thermochemie Mit einem Anhang: Der Kern des zweiten Hauptsatzes der Wärmetheorie
Max Planck: Einführung in die Theoretische Physik. Band 1 - 5
后世纪念
以其命名的太空望远镜:世界最大远红外线望远镜成功升空。
2009年5月14日13时12分(格林尼治时间,北京时间为14日21时12分),欧洲阿丽亚娜5-ECA型火箭携带欧洲航天局两颗科学探测卫星“赫歇尔”和“普朗克”,从法属圭亚那库鲁航天中心发射升空。
据欧航局和欧洲阿丽亚娜空间公司电视直播报道,发射地当天天气晴好,火箭按照预定时间点火,随后搭载两个探测卫星腾空而起。发射约30分钟后,“赫歇尔”和“普朗克”先后脱离火箭,开始自主飞行。在确认探测卫星与火箭成功分离后,圭亚那航天控制中心响起了热烈的掌声,欧航局局长让-雅克多尔丹和阿丽亚娜空间公司行政总裁让—伊夫勒加尔起身拥抱,表示庆祝。多尔丹在随后发表的讲话中说,随着“赫歇尔”和“普朗克”的发射,人类又向探索宇宙的起源迈进了一步。从发射到卫星与火箭分离虽然只有30分钟,但却凝聚了参与这项计划的欧洲15国多年的心血和梦想。勒加尔也对所有参与探测卫星研制和发射的人员表示了感谢,他相信,这两个探测卫星的观测结果将能颠覆人类对宇宙的认识。
据欧航局介绍,两个探测卫星将被定位在距地球约160万公里的“第二拉格朗日点”附近,以背对太阳和地球的姿势,对宇宙进行持续观测。两个探测卫星分别以英国天文学家威廉·赫歇尔和德国物理学家马克斯·普朗克的名字命名,其发射任务是欧航局工作重点之一。
“赫歇尔”实质上是一个太空望远镜,它也是人类有史以来发射的最大的远红外线望远镜,将用于研究星体与星系的形成过程;“普朗克”则主要用于对宇宙辐射进行观测。“赫歇尔”以英国天文学家威廉·赫歇尔的名字命名,它实际上是一台大型远红外线望远镜。“赫歇尔”宽4米,高7.5米,是迄今为止人类发射的最大远红外线望远镜。值得一提的是,“赫歇尔”望远镜的镜面以轻质金刚砂为材料,直径达到3.5米,是哈勃望远镜镜面直径的约1.5倍,是它的“前任”——欧航局1995年发射的远红外线望远镜的6倍。与“赫歇尔”相比,“普朗克”的个头小了许多,高度只有1.5米。它以德国物理学家马克斯·普朗克的名字命名,携带了一系列敏锐度极高的仪器,能够对宇宙微波背景辐射进行深入探测。科学界普遍认为,宇宙诞生于距今137亿年前的一次大爆炸,作为大爆炸的“余烬”,微波背景辐射均匀地分布在整个宇宙空间。因此,“普朗克”的探测结果将有助于科学家研究早期宇宙的形成和物质起源的奥秘。
在中国历史上,有许多皇帝因为他们的英勇和智慧而被称为战神。然而,明朝的一位皇帝朱祁镇却因为一个讽详情
在中国历史上,有许多女性因她们的智慧、勇气和野心而被载入史册。太平公主就是其中一位。她是唐高宗李详情
历史的长河中,总有一些人的行为和思想超越了他们所在的时代,让人们不禁怀疑他们是否是穿越者。其中,详情
在中国历史上,西汉初期的将领灌婴以其卓越的军事才能和长寿而著称。作为刘邦的重要支持者,灌婴在建立详情
在中国古典诗词的瑰宝中,宋代词人晏殊以其清新脱俗的风格和深沉内敛的情感,留下了许多经典的名篇佳作详情
在中国历史上,三国时期是一个充满英雄豪杰的时代。其中,蜀汉名将张飞以其勇猛和忠诚闻名于世。然而,详情
在中国历史上,有许多令人着迷的人物关系。其中,芈月与嬴政的关系尤为引人注目。作为秦国的高祖母和曾详情
在众多影视作品中,清宫剧一直备受观众喜爱。其中,《甄嬛传》作为一部热门的清宫剧,讲述了聪明绝顶的详情
在中国近代史上,有一起具有深远影响的事件,它不仅标志着中国反对外来侵略的开始,也展示了中国人民的详情
在三国历史的纷争中,公孙瓒与袁绍之间的斗争是东北方势力争夺的关键一役。尽管公孙瓒拥有白马义从的精详情
在中国古代书法史上,有两位被誉为二王的著名书法家,他们就是王羲之和王献之父子。这两位东晋时期的大详情
在中国的历史长河中,姓氏的起源和发展是一个复杂而丰富的过程。其中,许多姓氏的起源可以追溯到周代,详情
在中国历史上,有许多著名的战役和计策,其中暗渡陈仓是一则脍炙人口的故事。这个故事的主人公是西汉初详情
在中国古代,女性的美丽常常与她们的服饰和饰品紧密相连。其中,额头饰物是古代女性装扮中不可或缺的一详情
在《三国演义》中,猛将张飞被描述为被自己的部下范疆和张达所杀。然而,这是否是真实的历史呢?让我们详情
在中国古代历史上,有许多令人毛骨悚然的酷刑。其中,董卓被点天灯的故事尤为引人关注。这种刑罚不仅揭详情
在中国西藏自治区的首府拉萨,有一座举世闻名的宫殿——布达拉宫。这座宏伟的建筑不仅是藏传佛教的象征详情
在中国古代的皇宫中,除了皇帝、皇后等皇室成员外,还有一些特殊的群体——太监和宫女。他们作为皇宫中详情
在历史的长河中,许多美丽的传说和故事被创造并流传下来,尽管它们可能并非真实发生的历史事件,但这些详情
在中国古代历史中,有许多记载着极端残忍的刑罚,其中人彘作为一种令人毛骨悚然的酷刑,成为了封建暴政详情
在中国文学史上,唐代被誉为诗的盛世,孕育出许多才华横溢的诗人。其中,李贺以其独特的诗歌风格和深刻详情
吕布的死因是被曹操斩首。 历史上真实的吕布,是东汉末年的著名武将及群雄之一。他出生于并州九原县详情
在历史长河中,有许多战役以其出人意料的结果而闻名于世。其中,以少胜多的战役尤为人们所津津乐道,它详情
在历史的长河中,有一场战争以惨烈著称,却在最绝望的时刻上演了逆转的奇迹——那就是发生在16世纪末详情
在中国古代历史上,长平之战是一场影响深远的军事冲突,它不仅改变了战国时期的国家力量对比,也对后世详情
在历史长河中,蒙古铁骑和八旗都是以勇猛善战而著称的军队。然而,谁才是更厉害的战争之王呢?这是一个详情
野狼坡之战,是唐朝历史上一场具有重要意义的战役。这场战役不仅对唐朝的边疆安全产生了深远的影响,而详情
在历史的长河中,战争往往是国家之间力量对比、文化碰撞和利益争夺的直接体现。公元前14世纪至公元前详情
在中国的历史长河中,有一场战役以其激烈的战斗和深远的影响而闻名于世,那就是明朝末年的车厢峡之战。详情
在中国的历史长河中,有许多重要的战役都以其独特的战术和深远的影响而被人们铭记。其中,车厢峡之战就详情
好水川之战是一场发生在1038年北宋与辽国之间的战役。这场战役发生在今天的四川省南部,因为当时的详情
浅水原之战是中国历史上著名的战役之一,发生在公元755年。这场战争是唐朝与安史之乱叛军之间的一场详情
雅克萨之战是中俄两国之间的一场重要战役,发生在1858年。在这场战役中,清朝军队和俄罗斯帝国军队详情
在中国古代的神话传说中,姜子牙和鬼谷子都是极具智慧和能力的传奇人物。他们分别代表了道家和兵家的智详情
一、背景介绍 秦始皇陵兵马俑是中国历史上最著名的考古发现之一,被誉为世界第八大奇迹。然而,这些详情
标题:秦始皇10大诡异事件 一、陵墓之谜 1. 兵马俑:秦始皇陵的兵马俑被认为是世界上最大的详情
虞姬,中国历史上著名的女性人物,她与项羽的爱情故事被后人传颂不衰。而刘邦,作为项羽的对手和汉朝的详情
胤祥没有遭到雍正的清洗,但他在年轻时去世,这一点对于一些历史学家来说存在着一些争议。 一些人质详情
满清十二帝内没有溥仪的画像,只有照片,是什么原因呢? 在满清十二帝中,没有任何一位皇帝画过溥仪详情
溥仪的文化水平不仅仅是初中程度,尽管他的户口本上写着初中,但这并不是他真实的文化水平。 作为大详情
古人常说不孝有三,无后为大,而在皇权社会,皇帝不具备生育能力,可不仅仅是不孝的问题,毕竟古代历来详情
息肌丸是什么东西?真的有这种药存在吗?息肌丸是一种有催情作用的美容香精,塞到肚脐眼里融化到体内,详情
赵飞燕服用息肌丸保持美貌,息肌丸是什么东西呢?感兴趣的读者可以跟着趣历史小编一起往下看。 据说详情
历史上绵亿是荣亲王永琪与侧福晋索绰罗氏所生育的王府中的第五子,但其他的孩子都早早过世了,所以绵亿详情
彼岸花,又称曼珠沙华,是一种充满神秘色彩的花卉。这种花通常盛开在秋季,其鲜红的花瓣和细长的花蕊形详情
在现代社会,我们依赖于各种产品来完成日常生活的各个方面。从智能手机到笔记本电脑,从家用电器到汽车详情
在我们的日常生活中,我们常常会忽视地球上的一些奇妙之处。然而,当我们从太空中俯瞰地球时,这些事物详情
在生物多样性的广阔领域中,每一次新的物种发现都像是打开了一扇通向未知世界的窗户。最近,科学家们在详情
在这个世界上,有些物品的价值超越了我们的想象。它们不仅仅是物质的存在,更是艺术、历史和文化的象征详情
在世界的每一个角落,无论是热血沸腾的球场,还是电视机前的粉丝,都被一位女性棒球选手的魅力所吸引。详情
位于中国云南的九龙河瀑布群,被誉为中国的尼亚加拉,是中国最大的瀑布群。这里的瀑布高低错落,气势磅详情
北仑河口,位于中国浙江省宁波市北仑区,是中国大陆海岸线的最南点。这里既有美丽的海滨风光,也有丰富详情
鸭绿江口,位于中国东北地区,是中国大陆海岸线的最北点。这里既有壮丽的山川河流,也有悠久的历史文化详情
湖北省,位于中国中部,素有千湖之省的美誉。全省湖泊众多,水域面积占总面积的四分之一。今天,就让我详情
京九铁路,这条连接北京、上海、香港、澳门等9个省市的铁路干线,被誉为中国跨省市最多的铁路。今天,详情
成语兔死狗烹是一个充满故事性的成语,它的意思在于表达一种过河拆桥、忘恩负义的行为。具体来说,这个详情
《全唐诗》是在清代康熙年间编撰的。 《全唐诗》的编纂工作始于清代,由彭定求、杨中讷、沈三曾、潘详情
中国的传统俗语承载着丰富的文化遗产和历史智慧,其中男不拜月,女不拜灶是一句流传甚广的老话。这句俗详情
在中国的古代神话传说中,有四只凶猛无比的神兽,它们被称为四凶。这四只神兽分别是饕餮、混沌、穷奇和详情
在中国古代的神话与民间传说中,判官是地府中的司法官员,负责审判阴间亡魂的善恶与罪责。传说中的判官详情
《资治通鉴》是中国历史上一部极具影响力的编年体史书,它诞生于宋朝,由著名的历史学家司马光主编。这详情
中国的烹饪艺术以其多样性和复杂性而闻名于世,其中最为人熟知的便是分布在各地的八大菜系。每一菜系都详情
李时珍,明代著名医学家,他的代表作《本草纲目》被誉为中国乃至世界药学史上的一部巨著。这部书籍不仅详情
在中国古代的神话传说中,有许多神兽的形象深入人心。其中,最为人所熟知的莫过于饕餮。这个名字,源自详情
《洗冤集录》,作为世界上第一部系统的法医学专著,自南宋时期问世以来,就以其严谨的科学态度、细致的详情
在中国现代教育史上,蔡元培先生的名字如同一座里程碑,标志着中国高等教育的转型与飞跃。作为北京大学详情
在中国历史上,有许多皇帝因为他们的英勇和智慧而被称为战神。然而,明朝的一位皇帝朱祁镇却因为一个讽刺的说法被称为大明战神。这位皇帝的统治几乎导致了明朝的灭亡,这是为何呢? 二、朱祁镇的统治与战争 朱祁镇是明朝的一位皇帝,他在位期间,明朝