黎曼一罗赫定理,应用学科数学,所属领域是在复分析和代数几何,应用于算有指定零极点亚纯函数空间维数,是数学中,特别是复分析和代数几何,一个重要工具。
一些数据
我们从一个亏格 g 的连通紧黎曼曲面开始,在上面取定一点 P。我们想知道极点只在 P 的函数。这是向量空间的一个递增序列:没有极点的函数(即常值函数),在 P 有单极点,在 P 点最多有两个极点,三个极点……这些空间都是有限维的。在 g=0 我们可知维数的序列前几项为
这可由部分分式理论得出。反之,如果此序列开始为
则 g 必然是零(所谓黎曼球面)。
由椭圆函数理论知,g=1 时此序列是
且这也刻画了 g=1 情形。当 g > 2 时,序列前端不是固定的;但我们可以确定此序列的后端。我们也可以看到为什么 g=2 的情形是特殊的,由超椭圆曲线理论,其序列开始几项为
这些结论为何具有这种形式可以追溯到此定理的表述(罗赫的部分):两个维数之差。当其中一个可以为零,我们得到一个确定的公式,对亏格与度数(即自由度的个数)是线性的。这些例子已经可重构出如下形式
对 g = 1,修正项当度数为 0 时是 1;其它情形是 0。整个定理说明修正项是函数空间的一个“补空间”的维数。
定理的陈述
用现代记法,亏格为 g 的紧黎曼曲面与一个典范除子 K 的黎曼–罗赫定理表述为:
这对所有除子D 均成立。除子是曲面上点的自由阿贝尔群中一个元素。等价地,一个除子是曲面上一些点的整系数线性组合。
我们定义一个亚纯函数 f 的除子为
这里 R(f) 是所有零点与极点的集合,而 sν 定义为
我们类似地定义一个亚纯1-形式的除子。一个整体亚纯函数的除子叫做主除子。相差一个主除子的两个除子称为线性等价。一个整体亚纯 1-形式的除子叫做典范除子(通常记作 K)。任何两个亚纯 1-形式都是线性等价的,所以典范除子在线性等价的意义下是惟一的。
符号 deg(D) 表示除子 D 的度数,即在 D 中出现的系数之和。可以证明一个整体亚纯函数的除子的度数总是 0,所以除子的度数只取决于线性等价类。
数 l(D) 是首先感兴趣的量:使得 (h) + D 的所有系数都是非负的曲面上亚纯函数 h 组成的向量空间的维数(在C上)。直觉上,我们可以将其想象为在每一点处的极点不比 D 中对应系数更坏的所有亚纯函数;如果在 z 处 D 的系数是负数,则我们要求 h 在 z 处至少有那个重数的零点;如果 D 的系数是正数,h 最多有那个阶数的极点。线性等价的除子相应的向量空间通过乘以那个整体亚纯函数(这在差一个常数下是良定义的)是自然同构的。
即便我们对 K 一无所知,我们知道特殊性指标(index of speciality)(上文所说的修正项)
所以
这就是早先提到的黎曼不等式。
上面定理对所有紧连通黎曼曲面都成立。这个公式对一个代数闭域k 上所有非奇异射影代数曲线也成立。这里 l(D) 表示在每一点的极点不坏于 D 中对应系数的曲线上有理函数空间的维数(在 k 上)。
为了将其与我们上面的例子联系起来,我们需要 K 的一些信息:对 g=1 我们可取 K=0,而对 g=0 可取 K = −2P (任何 P)。一般地 K 的度数是 2g − 2。只要 D 的度数至少是 2g − 1 我们可确保修正项是 0。
回到 g= 2 的情形我们可知上面提到的序列是
由此知度数为 2 的不确定项是 1 或 2,当然与点的选择有关。可以证明任何亏格为 2 的曲线恰有六个点的序列是 1, 1, 2, 2, ... 而其它一般点的序列是 1, 1, 1, 2, ...。特别地,一个亏格 2 曲线是超椭圆曲线。对 g>2 几乎所有点的序列以 g+1 个 1 开始,只有有限个点为其它序列(参见魏尔斯特拉斯点)。
推广
曲线的黎曼–罗赫定理对黎曼曲面由黎曼与罗赫于1850年代证明,对代数曲线由施密特于1929年证明。它是基本的,曲线后续理论试图加细它的结论(比如布里尔–诺特理论(英语:Brill–Noether theory))。
在更高维(适当的定义除子或线丛)此定理有多个版本。它们的一般表述取决于将定理分成两部分。其一,现在称为塞尔对偶性,将 l(K − D) 项解释为第一层同调群的维数,l(D) 为零次上同调群(或截面的空间)的维数,定理左边成为一个欧拉示性数,而右边给出它的计算,正好只与黎曼曲面的拓扑有关的一个度数。
在二维代数几何中这样一个公式由意大利几何学派找到;代数曲面的黎曼-罗赫定理证明了(有各种版本,最早可能属于马克斯·诺特。这样的问题大约在1950年前解决了。
n-维推广,希策布鲁赫–黎曼–罗赫定理,由弗里德里希·希策布鲁赫找到并证明,利用了代数拓扑学中的示性类;他深受小平邦彦的工作影响。大约在同一时间让-皮埃尔·塞尔给出了塞尔对偶性的一般形式,故我们冠以他的姓氏。
亚历山大·格罗滕迪克于1957年证明了一个深远的推广,现在叫做格罗滕迪克–黎曼–罗赫定理。他的工作将黎曼–罗赫重新解释为不仅是关于一个簇的定理,而是关于两个簇之间的一个态射的。证明的细节由博雷尔–塞尔于1958年发表。
最后在代数拓扑中也找到了一个一般版本。这些发展本质上在1950年至1960年完成。阿蒂亚–辛格指标定理开启了这一条推广的道路。
它导致的结论是一个凝聚层相当好计算。如果只对交错和中一项感兴趣,这是通常的情形,必需更进一步的讨论比如消灭定理(英语:vanishing theorem)。
在中国历史上,有许多皇帝因为他们的英勇和智慧而被称为战神。然而,明朝的一位皇帝朱祁镇却因为一个讽详情
在中国历史上,有许多女性因她们的智慧、勇气和野心而被载入史册。太平公主就是其中一位。她是唐高宗李详情
历史的长河中,总有一些人的行为和思想超越了他们所在的时代,让人们不禁怀疑他们是否是穿越者。其中,详情
在中国历史上,西汉初期的将领灌婴以其卓越的军事才能和长寿而著称。作为刘邦的重要支持者,灌婴在建立详情
在中国古典诗词的瑰宝中,宋代词人晏殊以其清新脱俗的风格和深沉内敛的情感,留下了许多经典的名篇佳作详情
在中国历史上,三国时期是一个充满英雄豪杰的时代。其中,蜀汉名将张飞以其勇猛和忠诚闻名于世。然而,详情
在中国历史上,有许多令人着迷的人物关系。其中,芈月与嬴政的关系尤为引人注目。作为秦国的高祖母和曾详情
在众多影视作品中,清宫剧一直备受观众喜爱。其中,《甄嬛传》作为一部热门的清宫剧,讲述了聪明绝顶的详情
在中国近代史上,有一起具有深远影响的事件,它不仅标志着中国反对外来侵略的开始,也展示了中国人民的详情
在三国历史的纷争中,公孙瓒与袁绍之间的斗争是东北方势力争夺的关键一役。尽管公孙瓒拥有白马义从的精详情
在中国古代书法史上,有两位被誉为二王的著名书法家,他们就是王羲之和王献之父子。这两位东晋时期的大详情
在中国的历史长河中,姓氏的起源和发展是一个复杂而丰富的过程。其中,许多姓氏的起源可以追溯到周代,详情
在中国历史上,有许多著名的战役和计策,其中暗渡陈仓是一则脍炙人口的故事。这个故事的主人公是西汉初详情
在中国古代,女性的美丽常常与她们的服饰和饰品紧密相连。其中,额头饰物是古代女性装扮中不可或缺的一详情
在《三国演义》中,猛将张飞被描述为被自己的部下范疆和张达所杀。然而,这是否是真实的历史呢?让我们详情
在中国古代历史上,有许多令人毛骨悚然的酷刑。其中,董卓被点天灯的故事尤为引人关注。这种刑罚不仅揭详情
在中国西藏自治区的首府拉萨,有一座举世闻名的宫殿——布达拉宫。这座宏伟的建筑不仅是藏传佛教的象征详情
在中国古代的皇宫中,除了皇帝、皇后等皇室成员外,还有一些特殊的群体——太监和宫女。他们作为皇宫中详情
在历史的长河中,许多美丽的传说和故事被创造并流传下来,尽管它们可能并非真实发生的历史事件,但这些详情
在中国古代历史中,有许多记载着极端残忍的刑罚,其中人彘作为一种令人毛骨悚然的酷刑,成为了封建暴政详情
在中国文学史上,唐代被誉为诗的盛世,孕育出许多才华横溢的诗人。其中,李贺以其独特的诗歌风格和深刻详情
吕布的死因是被曹操斩首。 历史上真实的吕布,是东汉末年的著名武将及群雄之一。他出生于并州九原县详情
在历史长河中,有许多战役以其出人意料的结果而闻名于世。其中,以少胜多的战役尤为人们所津津乐道,它详情
在历史的长河中,有一场战争以惨烈著称,却在最绝望的时刻上演了逆转的奇迹——那就是发生在16世纪末详情
在中国古代历史上,长平之战是一场影响深远的军事冲突,它不仅改变了战国时期的国家力量对比,也对后世详情
在历史长河中,蒙古铁骑和八旗都是以勇猛善战而著称的军队。然而,谁才是更厉害的战争之王呢?这是一个详情
野狼坡之战,是唐朝历史上一场具有重要意义的战役。这场战役不仅对唐朝的边疆安全产生了深远的影响,而详情
在历史的长河中,战争往往是国家之间力量对比、文化碰撞和利益争夺的直接体现。公元前14世纪至公元前详情
在中国的历史长河中,有一场战役以其激烈的战斗和深远的影响而闻名于世,那就是明朝末年的车厢峡之战。详情
在中国的历史长河中,有许多重要的战役都以其独特的战术和深远的影响而被人们铭记。其中,车厢峡之战就详情
好水川之战是一场发生在1038年北宋与辽国之间的战役。这场战役发生在今天的四川省南部,因为当时的详情
浅水原之战是中国历史上著名的战役之一,发生在公元755年。这场战争是唐朝与安史之乱叛军之间的一场详情
雅克萨之战是中俄两国之间的一场重要战役,发生在1858年。在这场战役中,清朝军队和俄罗斯帝国军队详情
在中国古代的神话传说中,姜子牙和鬼谷子都是极具智慧和能力的传奇人物。他们分别代表了道家和兵家的智详情
一、背景介绍 秦始皇陵兵马俑是中国历史上最著名的考古发现之一,被誉为世界第八大奇迹。然而,这些详情
标题:秦始皇10大诡异事件 一、陵墓之谜 1. 兵马俑:秦始皇陵的兵马俑被认为是世界上最大的详情
虞姬,中国历史上著名的女性人物,她与项羽的爱情故事被后人传颂不衰。而刘邦,作为项羽的对手和汉朝的详情
胤祥没有遭到雍正的清洗,但他在年轻时去世,这一点对于一些历史学家来说存在着一些争议。 一些人质详情
满清十二帝内没有溥仪的画像,只有照片,是什么原因呢? 在满清十二帝中,没有任何一位皇帝画过溥仪详情
溥仪的文化水平不仅仅是初中程度,尽管他的户口本上写着初中,但这并不是他真实的文化水平。 作为大详情
古人常说不孝有三,无后为大,而在皇权社会,皇帝不具备生育能力,可不仅仅是不孝的问题,毕竟古代历来详情
息肌丸是什么东西?真的有这种药存在吗?息肌丸是一种有催情作用的美容香精,塞到肚脐眼里融化到体内,详情
赵飞燕服用息肌丸保持美貌,息肌丸是什么东西呢?感兴趣的读者可以跟着趣历史小编一起往下看。 据说详情
历史上绵亿是荣亲王永琪与侧福晋索绰罗氏所生育的王府中的第五子,但其他的孩子都早早过世了,所以绵亿详情
彼岸花,又称曼珠沙华,是一种充满神秘色彩的花卉。这种花通常盛开在秋季,其鲜红的花瓣和细长的花蕊形详情
在现代社会,我们依赖于各种产品来完成日常生活的各个方面。从智能手机到笔记本电脑,从家用电器到汽车详情
在我们的日常生活中,我们常常会忽视地球上的一些奇妙之处。然而,当我们从太空中俯瞰地球时,这些事物详情
在生物多样性的广阔领域中,每一次新的物种发现都像是打开了一扇通向未知世界的窗户。最近,科学家们在详情
在这个世界上,有些物品的价值超越了我们的想象。它们不仅仅是物质的存在,更是艺术、历史和文化的象征详情
在世界的每一个角落,无论是热血沸腾的球场,还是电视机前的粉丝,都被一位女性棒球选手的魅力所吸引。详情
位于中国云南的九龙河瀑布群,被誉为中国的尼亚加拉,是中国最大的瀑布群。这里的瀑布高低错落,气势磅详情
北仑河口,位于中国浙江省宁波市北仑区,是中国大陆海岸线的最南点。这里既有美丽的海滨风光,也有丰富详情
鸭绿江口,位于中国东北地区,是中国大陆海岸线的最北点。这里既有壮丽的山川河流,也有悠久的历史文化详情
湖北省,位于中国中部,素有千湖之省的美誉。全省湖泊众多,水域面积占总面积的四分之一。今天,就让我详情
京九铁路,这条连接北京、上海、香港、澳门等9个省市的铁路干线,被誉为中国跨省市最多的铁路。今天,详情
成语兔死狗烹是一个充满故事性的成语,它的意思在于表达一种过河拆桥、忘恩负义的行为。具体来说,这个详情
《全唐诗》是在清代康熙年间编撰的。 《全唐诗》的编纂工作始于清代,由彭定求、杨中讷、沈三曾、潘详情
中国的传统俗语承载着丰富的文化遗产和历史智慧,其中男不拜月,女不拜灶是一句流传甚广的老话。这句俗详情
在中国的古代神话传说中,有四只凶猛无比的神兽,它们被称为四凶。这四只神兽分别是饕餮、混沌、穷奇和详情
在中国古代的神话与民间传说中,判官是地府中的司法官员,负责审判阴间亡魂的善恶与罪责。传说中的判官详情
《资治通鉴》是中国历史上一部极具影响力的编年体史书,它诞生于宋朝,由著名的历史学家司马光主编。这详情
中国的烹饪艺术以其多样性和复杂性而闻名于世,其中最为人熟知的便是分布在各地的八大菜系。每一菜系都详情
李时珍,明代著名医学家,他的代表作《本草纲目》被誉为中国乃至世界药学史上的一部巨著。这部书籍不仅详情
在中国古代的神话传说中,有许多神兽的形象深入人心。其中,最为人所熟知的莫过于饕餮。这个名字,源自详情
《洗冤集录》,作为世界上第一部系统的法医学专著,自南宋时期问世以来,就以其严谨的科学态度、细致的详情
在中国现代教育史上,蔡元培先生的名字如同一座里程碑,标志着中国高等教育的转型与飞跃。作为北京大学详情
在中国历史上,有许多皇帝因为他们的英勇和智慧而被称为战神。然而,明朝的一位皇帝朱祁镇却因为一个讽刺的说法被称为大明战神。这位皇帝的统治几乎导致了明朝的灭亡,这是为何呢? 二、朱祁镇的统治与战争 朱祁镇是明朝的一位皇帝,他在位期间,明朝