乙醇,有机化合物,俗称酒精,化学结构通常缩写为 C2H5OH, C2H6O 或 EtOH,Et代表乙基。乙醇在常温常压下是一种易挥发的无色透明液体,低毒性,纯液体不可直接饮用。
历史
更多资料:烈酒
人类很早就会用糖类发酵制造酒精,这也是最早的几项生物技术之一。古代人也知道饮酒所带来的欣快作用,自史前时代开始人类就已开始喝酒,而其中会使人欣快的主要成分就是酒精。在中国发现的九千年前的陶器,上面就有酒的残留物,因此当时新石器时代的人已经开始饮酒 。

酒精发酵过程
酒精发酵的总体化学式为:
虽然古希腊及阿拉伯已有蒸馏的技术,但最早记载用酒蒸馏来制造酒精的是十二世纪意大利萨勒诺学校的炼金家 。第一个提到纯酒精的是拉曼·鲁尔 。
1796年Johann Tobias Lowitz利用部分纯化的乙醇(乙醇-水共沸物)制备纯乙醇,作法是将部分纯化的乙醇加入过量的无水碱,再在较低的温度下蒸馏 。拉瓦锡找出乙醇是由碳、氢、氧等元素所组成,1807年 尼古拉斯·泰奥多尔·索绪尔 ( 英语 : Nicolas-Théodore de Saussure ) 确定了乙醇的化学式 。五十年后 阿奇博尔德·斯科特·库珀 ( 英语 : Archibald Scott Couper ) 发表了乙醇的结构式,这也是最早发现的结构式之一 。
麦可·法拉第在1825年首次以合成方式制备乙醇,他当时发现硫酸可以吸收大量的煤气 。他将吸附煤气的硫酸液交给英国科学家Henry Hennell,他在1826年发现其中有乙基硫酸 。在1828年时Hennell和法国科学家Sérullas分别发现乙基硫酸可以分解,产生乙醇 。因此麦可·法拉第在1825年无意的发现乙醇可以以乙烯(煤气中的一种成分)为原料,利用酸触媒的水合反应制备,这也类似现在工业制备乙醇的方式 。
美国在1840年代曾用乙醇作为路灯的燃料,但在南北战争中针对工业用乙醇的课税很重.此作法没有经济效益.工业用乙醇的课税一直到1906年才消除 。从1908年起乙醇也是汽车的燃料之一,像福特T型车可以选择汽油或是酒精做为燃料 。乙醇也是常用酒精灯的燃料之一。
工业用的乙醇一般会用乙烯制备. 。乙醇常被用做一些人类可能接触或消耗物质的溶剂,像香水、颜料及医药等。乙醇既是溶剂,也是制造其他物质的原料。乙醇很长的时间都作为可以提供光和热的燃料,而最近又开始有研究可以用乙醇为燃料的内燃机。
物理性质
乙醇的物理性质主要与其低碳直链醇的性质有关。分子中的羟基可以形成氢键,因此乙醇黏度很大,也不及相近相对分子质量的有机化合物极性大。室温下,乙醇是无色,且有特殊味道的挥发性液体。
在针对钠黄光( λ =589.3nm)和温度为18.35 °C的条件下,乙醇的折射率为1.36242,比水稍高。
作为溶剂
乙醇易挥发,且可以与水、乙酸(醋)、丙酮、苯、四氯化碳、氯仿、乙醚、乙二醇、甘油、硝基甲烷、吡啶和甲苯等溶剂混溶。 此外,低碳的脂肪族烃类如戊烷和己烷,氯代脂肪烃如1,1,1-三氯乙烷和四氯乙烯也可与乙醇混溶。 随着碳数的增长,高碳醇在水中的溶解度明显下降。
由于存在氢键,乙醇具有潮解性,可以很快从空气中吸收水分。羟基的极性也使得很多离子化合物可溶于乙醇中,如氢氧化钠、氢氧化钾、氯化镁、氯化钙、氯化铵、溴化铵和溴化钠等。 盐(氯化钠)和氯化钾则微溶于乙醇。 此外,其非极性的烃基使得乙醇也可溶解一些非极性的物质,例如大多数香精油 和很多增味剂、增色剂和医药试剂。
化学反应
乙醇是一种伯醇,连接羟基的碳原子连接二个氢原子。许多乙醇的反应都和羟基有关。
酯化反应
与乙酸反应
乙醇可以与乙酸在浓硫酸的催化下发生酯化作用,生成乙酸乙酯和水。
其它酯化反应
乙醇可以在有酸的催化下和其它羧酸发生酯化作用,生成相应的酯类和水。
若是在化工产业中大规模的进行此反应,需设法生成物中移除水。酯类和酸或碱反应会产生醇类和盐,肥皂制作也是利用此反应的原理,因此称为皂化反应。
乙醇也会和无机酸形成酯类,像硫酸二乙酯和 磷酸三乙酯 ( 英语 : triethyl phosphate ) 是将乙醇和三氧化硫及五氧化二磷反应而得。硫酸二乙酯是有机合成中常用的乙基化试剂。 硝酸乙酯 ( 英语 : ethyl nitrite ) 是将硝酸钠和乙醇和硫酸反应而得,以前常当作利尿剂。
还原性
乙醇具有还原性,可以被氧化成为乙醛。酒精中毒的罪魁祸首通常被认为是有一定毒性的乙醛,而并非喝下去的乙醇 。例如
燃烧
乙醇可以与空气中氧气发生剧烈的氧化反应产生燃烧现象,生成水和二氧化碳。
乙醇也可与浓硫酸跟高锰酸钾的混合物发生非常激烈的氧化反应,燃烧起来。

燃烧乙醇
卤化反应
乙醇(C2H5OH)可以和卤化氢发生取代反应,生成卤代烃和水(H2O)。例如:
乙醇的卤代反应也可以和更强的卤化剂反应,比如氯化亚砜或三溴化磷.
乙醇在碱性条件下与卤素反应,最终产物会是卤仿 (CHX 3 ,X = Cl, Br, I),这一过程称为卤仿反应。 其反应中间产物是三氯乙醛:
脱水反应
乙醇可以在浓硫酸和高温的催化发生脱水反应,随着温度的不同生成物也不同。
如果温度在140℃左右生成物是乙醚:
如果温度在170℃左右,生成物为乙烯:
酸碱反应
与活泼金属反应: 乙醇可以和活泼性金属反应,生成醇盐和氢气。例如与钠的反应:
也可以和一些非常强的碱,比如氢化钠反应:
乙醇的酸性和水接近,两者的pKa分别为16和15.7,因此醇盐和碱存在如下化学平衡:
工业制法
工业上一般用淀粉发酵法或乙烯的水化法制取乙醇。 在一定条件下,乙烯通过固体酸催化剂直接与水反应生成乙醇: CH 2 =CH 2 +H 2 O→CH 3 CH 2 OH 上述反应是放热、分子数减少的可逆反应。
杀菌效果
乙醇可使蛋白质变性,但是由于纯乙醇无法渗透到细胞壁内层,故纯乙醇的杀菌效果不好。体积浓度75%的乙醇用于医用消毒,同样,碘酊(俗称碘酒)的溶剂也是乙醇。
高纯乙醇(~95%)会使细菌细胞脱水,但无法完全杀死在细菌细胞膜内的细菌细胞,原因是高纯度 乙醇 不能完全溶解由磷脂组成的细胞膜,从而无法使细胞内的细胞质流出以杀死细菌。酒精的浓度太高,反而马上使细菌表面的蛋白质凝固,形成一层硬膜,这层硬膜对细菌反而起到保护作用,防止酒精进一步渗入,所以高浓度酒精(95%)消毒杀菌效果,反而不及稀酒精(70~75%浓度最佳)
高浓度的乙醇会刺激皮肤和眼球,若食用过量则导致呕吐及恶心。长期食用则会损害肝脏。
性质
在人体肝脏中通过醇脱氢酶的氧化功能,只能有限的清除酒精。因此去除大量聚集血液中酒精含量可能遵循零级动力学。这意味着,酒精以恒定的速率离开人体,而不是有一个清除半衰期。对一种物质限制速率的步骤可以与其他物质共同存在。其结果是,血液中的酒精浓度可改变甲醇和乙二醇的代谢率。甲醇本身不是剧毒,但其代谢产物甲醛和甲酸则是;因此可摄取酒精,以降低产生这些有害代谢物的浓度的速度。乙二醇中毒可以以相同的方式进行处理。纯乙醇会刺激皮肤和眼睛。恶心,呕吐和醉酒是摄食的症状。长期食用可导致严重的肝损害。
酒精和消化
酒精中的一部分是疏水性。这种疏水性或亲脂性,能使酒精扩散穿过胃壁细胞。事实上酒精是一种可以在胃中被吸收的罕见的物质之一。而大多数食品或物质在小肠中被吸收。然而即使酒精可以在胃中被吸收,但它主要还是在小肠中吸收,因为小肠有一个广大的表面积,以促进酒精吸收。一旦酒精在小肠被吸收,它会延缓胃内容物的释放与排空以进入小肠。因此酒精可延缓营养物质的吸收率。酒精被身体吸收后到达肝脏,在那里酒精被代谢。
酒精呼吸检测仪
酒精未由肝脏处理就流向心脏,每单位时间肝脏只能处理一定量的酒精,因此,当一个人喝太多酒,就有更多的酒精可以流到心脏。在心脏,酒精降低心脏收缩力。因此,心脏只会泵送更少量的血,因而降低了整个身体的血压。此外血液到达心脏再流到肺部,以补充血液中的氧气浓度。在这一阶段,一个人可以呼出可追踪的酒精痕迹。这就是酒精呼气测试(或酒精呼吸检测仪)的基本原理,以确定是否有司机酒后驾车。
带酒精的血液由肺部返回心脏整个身体会散发出来。有趣的是,酒精增加的高密度脂蛋白(HDL的),它携带胆固醇。众所周知酒精能使血液不容易凝固,减少心脏病发作和中风的风险。这可能就是为什么当适量饮酒可能产生的健康益处的原因。此外,酒精会使血管扩张。因此一个人会感到温暖,他们的脸就变得红晕和粉红色。
毒性比较
关于常见管制药品的伤害性及成瘾性比较可参见右图,作为参照,烟、酒也列于其中。 从图中可见,酒精对身体造成的生理伤害和依赖性,较大麻和摇头丸严重,但轻于古柯碱、海洛因。

上图可以显示,合法毒品烟(tabacco)酒(alcohol)的伤害性及成瘾性其实不低。资料来自医学期刊:The Lancet 。(纵轴是成瘾性、横轴是伤害性)
致癌性
含酒精的饮料被世界卫生组织归类为1类致癌物(对人体有明确致癌性的物质或混合物)。
药性
在中国传统医药观点上,乙醇有促进人体吸收药物的功能,并能促进血液循环,治疗虚冷症状。漱口水如果含有较高浓度的酒精,就算不吞入也可能有害健康。 乙醇先转为乙醛,乙醛再放大神经递质GABA的作用。
毒性
吸入:
可能刺激呼吸道和黏膜。
可能引起危害中枢神经系统的作用,症状包括兴奋、陶醉、头痛、头昏眼花、困倦、视觉模糊、疲劳、战栗、痉挛、丧失意识、昏睡、呼吸停止和死亡。
皮肤:轻微刺激。
眼睛:
暴露于液体、蒸气、薰烟或雾滴可能引起中度刺激。
直接接触可能引起刺激、痛、角膜发炎及角膜可能损害。
食入:
可能引起危害中枢神经系统的作用,症状如〝吸入〞所列举。
严重急性中毒可能引起血糖过低、体温过低和伸肌僵硬3 . 吸入肺部可能引起肺炎。
局部效应:
致敏感性:长期皮肤接触,可能导致很少数人皮肤过敏反应。
慢毒性或长期毒性:
反复或长期接触皮肤可能导致脱脂、红、痒、发炎、龟裂及可能二度感染。
长期皮肤接触,可能导致很少数人皮肤过敏反应。
食入:慢性中毒可能引起肝脏、肾脏、大脑、肠胃道和心肌衰退。
可能引起不良的繁殖影响。
曾患肝病的人暴露其中可能增加危害性。
与其他药物共同使用可能有不良作用。
特殊效应:
对水中生物具高毒性。
急救措施
吸入:
将患者移离暴露区。
如果呼吸停止,确实清通呼吸道并施行心肺复苏术。
如果呼吸困难,给予氧气。
保持患者温暖且休息。
立即就医。
皮肤接触:
以肥皂和水彻底清洗患部。
立刻脱除污染的衣服。
如果刺激性持绩,立即就医。
眼睛接触:
立刻以大量水冲洗15分钟以上。
眼皮应提离眼球以确实彻底清洗。
立即就医。
食入:
若患者意识清醒,给患者喝下1至3杯水或牛奶以稀释胃部内的含量。
若患者自发性呕吐或催吐时,观察呼吸是否困难。
不要对意识不清或半痉挛的患者催吐。
保持患者温暖且休息。
大量食入或有肠胃症状时,立即就医。
最重要症状及危害效应:刺激,吸入肺部可能引起肺炎。
对急救人员之防护:应穿着 C 级防护装备在安全区实施急救。
参见
乙烯
乙醛
甲醇
丙二醇
毒品
变性乙醇
醛糖
酮糖
固态酒精 (加利福尼亚雪球) =乙酸钙+ 乙醇

在中国历史的长河中,北魏冯太后以其卓越的政治智慧与果敢的改革精神,成为南北朝时期最具影响力的女性详情

在唐朝永徽年间的深宫中,一场关于权力与情感的博弈悄然展开。唐高宗李治在王皇后与武则天之间摇摆,最详情

公元前225年,秦国名将李信率领20万大军南下灭楚,却在淮水流域遭遇惨败,七名都尉阵亡,秦军几乎详情

公元1393年,大明王朝的朝堂被一场血雨腥风笼罩。开国名将蓝玉以谋反罪名被处以剥皮实草之刑,其家详情

公元690年,武则天以67岁高龄登基称帝,改国号为周,成为中国历史上唯一正统女皇帝。这场突破性别详情

公元710年,唐隆政变以李隆基与太平公主联手诛杀韦后集团告终。这场政变不仅让李唐江山重归李氏,更详情

明成祖朱棣(1360-1424)作为中国历史上最具争议的帝王之一,其"永乐盛世&quo详情

在三国乱世中,西北战场的硝烟始终未散。作为曹魏西线最高统帅,夏侯渊与西凉悍将马超的多次交锋,不仅详情

东汉末年,汜水关下,一场改变历史进程的战斗悄然展开。十八路诸侯联军讨伐董卓,却被其麾下猛将华雄连详情

公元713年,长安城内暗流涌动。唐玄宗李隆基以雷霆手段发动先天政变,将权倾朝野的姑姑太平公主赐死详情

公元249年正月初六,曹魏帝国上演了一场决定历史走向的政变——高平陵之变。当司马懿以郭太后名义封详情

在五代十国的乱世中,陶谷以文翰冠绝一时的才华与倾险狠媚的处世之道,在政权更迭中屡次押注成功,却因详情

在中国浩瀚的历史长河中,羊献容的名字或许并不如武则天、吕后那般如雷贯耳,但她的人生轨迹却如同一部详情

1435年寒冬,九岁的朱祁镇在紫禁城乾清宫接过玉玺,成为明朝第六位皇帝。此时的大明王朝,外有蒙古详情

在三国纷争的宏大叙事中,吴懿以其独特的政治身份与军事才能,成为蜀汉政权中不可忽视的存在。这位出身详情

公元1457年正月十六日夜,北京城被一场突如其来的政变撕裂。石亨、徐有贞、曹吉祥等人率领千余士兵详情

五代十国至北宋初年的动荡岁月里,王彦超以七十二载军旅生涯,在二十七次重大战役中书写传奇。这位历经详情

北宋政坛与文坛交汇处,曾巩以"南丰先生"之名,既在地方治理中践行"详情

元末明初的政坛暗流涌动,被后世誉为"诸葛亮再世"的刘伯温,却在功成名就之际两详情

北宋文坛星河璀璨,曾巩以南丰先生之名位列唐宋八大家,其一生跨越文学革新与教育实践两大领域,既以古详情

东汉末年,徐州牧陶谦手握天下精兵丹阳兵,坐拥五郡之地,粮食储备丰盈,曾让曹操、袁术等枭雄忌惮三分详情

公元220年,关羽败走麦城身死,荆州落入东吴之手。次年,刘备以为弟报仇为名,倾全国之力发动夷陵之详情

公元222年,三国时期规模最大的战役之一——夷陵之战爆发。蜀汉昭烈帝刘备亲率五万大军东征,意图为详情

在华夏文明起源的宏大叙事中,阪泉之战与涿鹿之战犹如两枚关键拼图,共同构建起炎黄部落联盟的崛起图景详情

公元前273年,战国中期的中原大地战火纷飞。在韩国华阳(今河南新郑北)的战场上,一场改变战国格局详情

在中国历史的长河中,三国鼎立的局面持续了数十年,魏、蜀、吴三国相互征伐,战火纷飞。而最终打破这一详情

1521年,明朝广东海道副使汪鋐指挥的屯门海战,是中国与西方殖民者的首次军事对抗。这场战役虽以明详情

在云南西部高黎贡山南麓的崇山峻岭间,一座名为磨盘山的险峻山岭静默矗立。这座海拔2600余米的山峰详情

公元215年的合肥城下,一场被后世神话为"八百破十万"的战役,实则是三国时期详情

在探讨中国古代军事史时,"淝水之战"作为以少胜多的经典战例广为人知,但&qu详情

《左传》作为一部叙事详实的史书,以其高超的叙事技巧和深刻的历史洞察力,为后人展现了春秋时期诸多重详情

在历史的长河中,北方草原上的游牧民族乌桓,曾是汉朝边疆的重要力量。然而,随着东汉末年的局势动荡,详情

在中国古代历史的长河中,秦朝的统一战争无疑是一段波澜壮阔的篇章。然而,在这场规模空前的征服之战中详情

在科学的世界里,有一种细胞被赋予了不死的名号,这就是海拉细胞。这种细胞源自于一位名叫亨丽埃塔·拉详情

在中国古代的神话传说中,姜子牙和鬼谷子都是极具智慧和能力的传奇人物。他们分别代表了道家和兵家的智详情

一、背景介绍 秦始皇陵兵马俑是中国历史上最著名的考古发现之一,被誉为世界第八大奇迹。然而,这些详情

标题:秦始皇10大诡异事件 一、陵墓之谜 1. 兵马俑:秦始皇陵的兵马俑被认为是世界上最大的详情

虞姬,中国历史上著名的女性人物,她与项羽的爱情故事被后人传颂不衰。而刘邦,作为项羽的对手和汉朝的详情

胤祥没有遭到雍正的清洗,但他在年轻时去世,这一点对于一些历史学家来说存在着一些争议。 一些人质详情

满清十二帝内没有溥仪的画像,只有照片,是什么原因呢? 在满清十二帝中,没有任何一位皇帝画过溥仪详情

溥仪的文化水平不仅仅是初中程度,尽管他的户口本上写着初中,但这并不是他真实的文化水平。 作为大详情

古人常说不孝有三,无后为大,而在皇权社会,皇帝不具备生育能力,可不仅仅是不孝的问题,毕竟古代历来详情

息肌丸是什么东西?真的有这种药存在吗?息肌丸是一种有催情作用的美容香精,塞到肚脐眼里融化到体内,详情

赵飞燕服用息肌丸保持美貌,息肌丸是什么东西呢?感兴趣的读者可以跟着趣历史小编一起往下看。 据说详情

古印度文明,作为人类文明的摇篮之一,承载着丰富的文化遗产和深邃的哲学思想。其影响力不仅深远地渗透到了详情

彼岸花,又称曼珠沙华,是一种充满神秘色彩的花卉。这种花通常盛开在秋季,其鲜红的花瓣和细长的花蕊形详情

在现代社会,我们依赖于各种产品来完成日常生活的各个方面。从智能手机到笔记本电脑,从家用电器到汽车详情

在我们的日常生活中,我们常常会忽视地球上的一些奇妙之处。然而,当我们从太空中俯瞰地球时,这些事物详情

在生物多样性的广阔领域中,每一次新的物种发现都像是打开了一扇通向未知世界的窗户。最近,科学家们在详情

在这个世界上,有些物品的价值超越了我们的想象。它们不仅仅是物质的存在,更是艺术、历史和文化的象征详情

在世界的每一个角落,无论是热血沸腾的球场,还是电视机前的粉丝,都被一位女性棒球选手的魅力所吸引。详情

位于中国云南的九龙河瀑布群,被誉为中国的尼亚加拉,是中国最大的瀑布群。这里的瀑布高低错落,气势磅详情

北仑河口,位于中国浙江省宁波市北仑区,是中国大陆海岸线的最南点。这里既有美丽的海滨风光,也有丰富详情

鸭绿江口,位于中国东北地区,是中国大陆海岸线的最北点。这里既有壮丽的山川河流,也有悠久的历史文化详情

湖北省,位于中国中部,素有千湖之省的美誉。全省湖泊众多,水域面积占总面积的四分之一。今天,就让我详情

在武侠文化的语境中,实力往往与武功修为、江湖地位、智谋韬略紧密相连,而当我们将虚构角色殷野王与现详情

在唐代诗坛的苍茫雪原中,刘长卿以五言绝句《逢雪宿芙蓉山主人》凿出一眼温热的清泉。这首诞生于贬谪途详情

在《红楼梦》这部文学巨著中,妙玉无疑是一个极具神秘色彩和独特魅力的人物。她以超凡脱俗的才情、孤傲详情

在中国悠久的历史长河中,涌现出了无数才华横溢的诗人,他们用优美的诗句抒发了对人生、爱情、自然和社详情

在中国古代文学的璀璨星河中,《诗经》犹如一颗耀眼的明珠,汇聚了无数文人墨客的才情与智慧。而在《诗详情

王勃,唐代初期的杰出诗人,以其才华横溢和短暂而传奇的一生著称。在他的众多诗作中,《晚留凤州》以其详情

《射雕英雄传》作为金庸先生的经典武侠小说,自问世以来便受到了广大读者的喜爱。在这部小说中,丘处机详情

在中国古代文化的历史长河中,《世说新语》以其独特的魅力记录了一个个鲜明的人物与故事。这部作品不仅详情

在道教传奇与神话故事中,赤脚大仙这一角色的形象虽短暂却极为鲜明,他在《西游记》中的出场更是令人印详情

在浩瀚的中华文化宝库中,斯斯文文这个词汇常被人们所提及。但是,它究竟是不是一个成语?它背后蕴含的详情

你知道时时刻刻这个成语吗?它不仅仅是描述时间的连续,更是一种对生活态度的诠释!那么,这个成语究竟详情

在中国历史的长河中,北魏冯太后以其卓越的政治智慧与果敢的改革精神,成为南北朝时期最具影响力的女性政治家之一。她的一生,既是个人奋斗的传奇,也是北魏王朝从游牧政权向封建化国家转型的缩影。从罪臣之女到两度临朝称制的无冕女皇,冯太后以铁血手腕推动改革,