詹姆斯·普雷斯科特·焦耳,英国物理学家,英国皇家学会会员,外文名James Prescott Joule,生卒时间1818年12月24日—1889年10月11日,主要成就热力学第一定律。
人物生平
焦耳生于英格兰北部曼彻斯特城的郊外索尔福德,他的父亲是本杰明·焦耳(1784-1858),一个富有的酿酒师,他的母亲为爱丽丝·普雷斯科特·焦耳。焦耳出生时他们家在索尔福德的新贝利街,与他家的啤酒厂毗邻。焦耳在年幼时因为身体健康原因一直在索尔福德附近彭德尔伯里的一个家庭学校里就学。1834年,16岁的焦耳和他的哥哥本杰明被送到曼彻斯特文学与哲学学会的道尔顿的门下学习。焦耳兄弟俩跟随道尔顿学习了两年算术和几何。后来道尔顿因中风而退休。但是跟随道尔顿的这段经历影响了焦耳的一生。焦耳后来又受约翰·戴维斯指导。焦耳兄弟俩对电学非常着迷,曾经实验相互电击,还拿家里的仆人们做过实验。
焦耳在受道尔顿指导期间,于1835年进入曼彻斯特大学就读。毕业后开始参加经营自家的啤酒厂,直到1854年卖出啤酒厂,他在经营上都一直很活跃。科学开始只是焦耳的一个爱好,直到后来他开始研究用新发明的电动机来替换啤酒厂的蒸汽机的可行性。1838年,他的第一篇关于电学的科学论文被发表在《电学年鉴》上。这份学术期刊是由戴维斯的同事威廉·斯特金创办和主持的。在1840年,他得出了焦耳定律的公式,本来准备让皇家学会大吃一惊的,可后来发现自己被仅仅当作乡下的业余爱好者。当斯特金在1840年搬到曼彻斯特后,他和焦耳成为了这个城市知识分子的核心。他俩同感,科学和神学应该并且可能整合在一起。焦耳开始在斯特金的皇家维多利亚实践科学讲座上开办讲座。
1892年的焦耳肖像
他后来认识到,在蒸汽机烧1磅煤所产生的热量是在革若夫电池(一种早期的电池)里消耗1磅锌所发出热量的5倍。焦耳对“经济负荷”的通常标准是,将1磅重量抬升1英尺的能力,即英尺-磅。
焦耳被弗朗兹·艾皮努斯(英语:Franz Aepinus)的想法所影响,试图用被“振动形态的热质以太”所环绕的原子来解释电学和磁。
然而焦耳的兴趣从有关可以从给定来源提取多少功这样的狭隘的经济问题开始转向,最终到思考能量的可转换性。在1883年他发表了一些实验结果,显示他在1841年所定量化的热效应是因为导体本身的发热,而不是从装置其他部分传来的热量。这个结论对当时的热质说是一个直接的挑战。热质说认为,热量既不能被创造,也不能被销毁。自从被拉瓦锡在1783年提出后,热质说一直是热学领域的主导性的理论。拉瓦锡的影响力再加上尼古拉·卡诺自1824年所提出的关于热机的热质理论在实践中的成功,使得既不在学术界又不在工程界的年轻的焦耳看起来前途坎坷。热质说的支持者准备指出,热电效应的对称性说明热能和电能是(至少大约)可以被一个可逆过程所相互转化的。
1889年10月11日,焦耳在塞尔的家中逝世,被埋葬在该市的布鲁克兰公墓。在他的墓碑上刻有数字“772.55”,这是他在1878年的关键测量中得到的热功当量值。墓碑上还刻有约翰福音的一段话,“趁着白日,我们必须做那差我来者的工;黑夜将到,就没有人能做工了”(约翰 9:4)。位于索尔的威瑟斯本酒馆改为以他的名字命名。尽管焦耳没有葬于西敏寺,但还是在那为他举行了纪念仪式。由阿尔弗雷·德吉尔伯特完成的塑像坐落在曼彻斯特市政厅中,与道尔顿的塑像相对。
主要成就
焦耳定律的发现
1840年12月,他在英国皇家学会上宣读了关于电流生热的论文,提出电流通过导体产生热量的定律;由于不久 э . х . 楞次 也独立地发现了同样的定律,而被称为焦耳-楞次定律。
用公式表示如下:Q=I^2*Rt(J)
I=通过导体的电流,单位:A;
R=导体的有效电阻,单位:Ω;
t=通电时间,单位:s。
热功当量
焦耳在1845年测量热功当量的装置
焦耳在他1845年的文章里写道:
焦耳在这里采用了“活力”(能量用语)的说法, 可能是因为霍奇金森已经读了一篇于1844年4月发表在文学和哲学学会的对爱华德的“论动力的测量”这篇文章的评论。
通过进一步的实验和测量,焦耳估计“热功当量”为,838ft·lbf的功可以使1磅水的温度升高1℉,相当于4.51J/cal。1843年他在于科克召开的英国科学协会的一次会议的化学分场里宣布了他的结果,迎来的是一片沉默。
尽管遭遇到冷遇,焦耳还是不屈不饶的开始寻找一种纯机械的方法来显示功和热之间的转化。靠迫使水流过穿孔的圆柱,他能够测量到轻微的粘滞加热。他测得热功当量为770 ft·lbf/Btu(4.14 J/cal)。用电学方法和机械方法得到的热功当量值至少在同一数量级上的事实对焦耳来说,是证明热和功的可转化性这一事实的有力证据。
焦耳接着又尝试了第三条路。他测量了压缩空气所产生的热量,得到热功当量的值为823 ft·lbf/Btu(4.43 J/cal)。这个实验为焦耳的批评者提供了一个最容易的目标发表各种异议,但最后都被焦耳通过聪明的实验设计将预期中那些的反对给解决了。但是他的文章还是被皇家学会拒绝,他不得不改在《哲学杂志》上发表。在这篇文章中,焦耳直截了当地抛弃了尼古拉·卡诺和克拉佩龙的热质说,但他的神学的动机也变得很明显:
1845年,焦耳在英国协会的于剑桥举办的会议上宣读了他的论文“论热功当量”。在这份论文中,他报导了他最著名的实验。通过重物下落时的机械功来转动一个放置于隔热水桶中的带转桨的转轮,转动会使水温升高。由此他测得的热功当量为819 ft·lbf/Btu(4.41 J/cal)。
1850年,焦耳发表了一个修正的测量值,772.692 ft·lbf/Btu(4.159 J/cal)。这个值很接近20世纪初期采用的值,4.1860 J/cal。
理论的反响和与开尔文的合作
焦耳测量热功当量的装置的示意图
最初对焦耳的工作的一些反对是因为他的工作依赖于极端精确的测量。他声称可以将温度的测量精确到⁄200℉(3mK)以内。这个精度在当时的实验物理领域是很不寻常的。不过焦耳的怀疑者可能忘了焦耳在酿酒方面的经历。而且他还得到测量仪器制作家约翰·本杰明·丹瑟的大力支持。
德国的赫尔曼·亥姆霍兹却开始熟悉焦耳的工作以及尤利乌斯·罗伯特·冯·迈尔在1842的类似研究。虽然这两人在各自发表了自己的工作后都被一直忽视,但亥姆霍兹在1847年结论性的宣布能量守恒定律时承认了他俩的贡献。
此外在1847年英国协会于牛津的会议上,焦耳也做了一个报告,当时的听众中有乔治·斯托克斯、迈克尔·法拉第,以及当时已经被格拉斯哥大学聘为教授的年轻新人威廉·汤姆森。斯托克斯“倾向成为一个焦耳主义者”;法拉第虽然心存怀疑但还是“被焦耳的理论所震惊”;开尔文被迷住了,但还是有所怀疑。
这一年的晚些时候,开尔文与焦耳又在霞慕尼不期而遇。焦耳当时刚和阿米莉娅·葛莱姆丝在8月18日结婚后来到此地度蜜月。尽管焦耳还在婚礼的热情中,他还是和开尔文安排了几日后去测量色朗契斯瀑布顶部和底部的温度差。焦耳认为瀑布冲下时的能量改变,会稍微增加水的热量与温度。但是在大自然下,还有许多其他的因素会影响水温,所以他们没有收获。
虽然开尔文觉得焦耳的结果需要理论的解释,但他还后退并为卡诺-克拉佩龙学派辩护。当开尔文在1848年报导绝对温度时,他写到,“热量(或者卡路里)转化为机械能的效应不太可能且肯定无法证实”。但是在他的一个脚注里暗示了他的最初的对热质说的怀疑,他参考了焦耳的“非常让人印象深刻的发现”。当焦耳读到开尔文的一篇文章后写信给他,声称自己的实验已经显示了热量向功的转化,但还是在准备做更进一步的实验。让人吃惊的是,开尔文没有回寄给焦耳他自己文章的拷贝。开尔文在回信中提到,他正在准备自己的实验,并且希望能调和两人的观点。虽然开尔文在之后的两年里并没有进行新的实验,但他越来越不满卡诺的理论,转而相信焦耳的观点。在1851的文章里,开尔文愿意做一个折中,承认“整个热的动能理论是基于……两个……前提,分别是焦耳和卡诺-克拉佩龙的理论”。
当焦耳一读到这篇文章,他马上写信给开尔文谈了他的评论和问题。随后俩人开始通过大量的通信开始了富有成果的合作。焦耳进行实验,开尔文分析实验结果并建议进一步的实验。这个合作从1852年持续到1856年,他们的成果中包括有焦耳-汤姆孙效应。关于这个成果的发表论文使得焦耳的研究和分子运动论被广为接受。
詹姆斯·普雷斯科特·焦耳
分子运动论
动力学是有关运动的科学。焦耳是道尔顿的学生,所以不奇怪他深深信任原子理论,而尽管同时代的许多科学家还在怀疑该理论。他也是少数能够接受当时还在被忽视的约翰·赫帕斯的气体的动力学理论的人之一。他后来深深的被彼得·爱华德在1813年的一篇文章“论动力的测量”所影响。
焦耳察觉到了他的发现和热动力学理论之间的关系。他的实验笔记表明,他相信热是旋转运动而不是平移运动的一种形式。
焦耳无法抗拒在弗兰西斯·培根、艾萨克·牛顿爵士、约翰·洛克、伦福德伯爵和汉弗里·戴维爵士等前人那找到自己观点的前例。虽然这些观点都是有道理的,但焦耳还是根据伦福德发表的文章估计出一个热功当量值,1034 ft·lbf/Btu。一些现代作者已经从根本上批判了这个方法,认为伦福德的实验无法代表着系统的定量测量。在焦耳的一篇个人笔记中,他断言迈尔的测量并不比伦福德的更精确,可能希望迈尔没有参加过他自己的工作。焦耳对解释绿闪光现象也有所贡献,他在1869年给曼彻斯特文学与哲学学会的一封信中提到这个现象。
荣誉与头衔
曼彻斯特教堂里的焦耳的雕像
在50多年的学术生涯中,焦耳所获得的荣誉和头衔有:
皇家学会院士(1850)
曼彻斯特文学与哲学学会主席(1860)
英国科学协会主席(1872、1887)
由王室专款拨出的津贴,每年200英镑,以奖励他对科学的奉献(1878)
皇家文艺学会的阿尔伯特奖章(1880)
人物影响
无论是在实验方面,还是在理论上,焦耳都是从分子动力学的立场出发,进行深入研究的先驱者之一。在从事这些研究的同时,焦耳并没有间断对热功当量的测量。
在去世前两年,焦耳对他的弟弟的说,“我一生只做了两三件事,没有什么值得炫耀的。”相信对于大多数物理学家,他们只要能够做到这些小事中的一件也就会很满意了。焦耳的谦虚是非常真诚的。很可能,如果他知道了在威斯敏斯特教堂为他建造了纪念碑,并以他的名字命名能量单位,他将会感到惊奇,虽然后人决不会感到惊奇。
十八世纪,人们对热的本质的研究走上了一条弯路:“热质说”在物理学史上统治了一百多年。虽然曾有一些科学家对这种错误理论产生过怀疑,但人们一直没有办法解决热和功的关系的问题;是詹姆斯·普雷斯科特·焦耳为最终解决这一问题指出了道路。
在中国古代书法史上,有两位被誉为二王的著名书法家,他们就是王羲之和王献之父子。这两位东晋时期的大详情
在中国古代的姓氏体系中,司马是一个相当常见的姓氏。然而,当我们谈论到两位著名的历史人物——司马欣详情
在罗贯中的《三国演义》中,吕布被塑造为英勇无敌的武将,然而在真实的历史记载中,吕布并未被列入蜀汉详情
春秋时期,吴国的历史充满了权力斗争和血腥冲突。在这个充满变革的时代,王僚和庆忌的父子关系成为了一详情
关羽,字云长,是中国历史上著名的武将,他的英勇和忠诚使他在中国历史和文化中占有重要地位。其中,他详情
在中国历史上,三国时期是一个充满战争与政治斗争的时代。在这个混乱的时代中,有一位关键的人物——他详情
在中国历史上,汉高祖刘邦斩白蛇的故事广为流传。这个故事不仅被视为秦朝灭亡的征兆,也是刘邦推翻秦朝详情
汉成帝刘骜在位共25年。 汉成帝,即刘骜,是西汉的第十二位皇帝。他的在位时间从公元前33年开始详情
在中国古代汉朝宫廷中,钩弋夫人以其非凡的身份和悲剧性的命运,成为了历史长河中一个不可忽视的人物。详情
在中国历史的长河中,北宋末年发生的靖康之难是一段让人痛心的往事。这场灾难不仅标志着北宋的灭亡,也使得详情
薛仁贵,历史上确有其人,他是一位闻名于唐朝初年的军事将领。 首先,薛仁贵(614年-683年3详情
东周之后,中国历史上出现了一个极为重要的朝代——秦朝。这个朝代不仅结束了长达数百年的分裂局面,也详情
在三国历史的激流中,曹魏的第二位皇帝曹叡承载着父辈的遗志与国家的重任。他在位期间,不仅继承了曹操详情
明朝历史上,建文帝朱允炆的下落一直是一桩悬而未决的历史之谜。据史料记载,建文帝是明成祖朱棣发动靖详情
岳飞,南宋时期的民族英雄和著名将领,因其忠诚勇敢、战功卓著而深受后人敬仰。然而,他生前却因政治斗详情
在中国历史上,明朝的最后一位皇帝——崇祯皇帝,其一生与死亡都充满了悲剧色彩。崇祯皇帝,原名朱由检详情
在中国古代文学史上,元嘉时期是南朝宋的一个重要阶段,这一时期孕育了三位杰出的文学家——谢灵运、颜详情
在历史的长河中,鞋履作为人类文明进步的一个重要标志,不仅承载着实用性的功能,还蕴含着丰富的文化内详情
1986年4月26日,位于乌克兰的切尔诺贝利核电站发生了历史上最严重的核事故之一。这场灾难不仅对详情
在波澜壮阔的欧洲历史长河中,玛丽娅·特蕾莎以其非凡的政治智慧和开明的统治理念,成为了18世纪最著详情
在中国历史的长河中,秦国以其非凡的崛起与戏剧性的灭亡,成为了一个令人津津乐道的话题。作为中国历史详情
画家四祖,这一称谓汇聚了晋唐时期四位杰出的绘画大师,他们分别是**东晋的顾恺之、南朝宋的陆探微、详情
在历史的长河中,有一场战争以惨烈著称,却在最绝望的时刻上演了逆转的奇迹——那就是发生在16世纪末详情
在中国古代历史上,长平之战是一场影响深远的军事冲突,它不仅改变了战国时期的国家力量对比,也对后世详情
在历史长河中,蒙古铁骑和八旗都是以勇猛善战而著称的军队。然而,谁才是更厉害的战争之王呢?这是一个详情
野狼坡之战,是唐朝历史上一场具有重要意义的战役。这场战役不仅对唐朝的边疆安全产生了深远的影响,而详情
在历史的长河中,战争往往是国家之间力量对比、文化碰撞和利益争夺的直接体现。公元前14世纪至公元前详情
在中国的历史长河中,有一场战役以其激烈的战斗和深远的影响而闻名于世,那就是明朝末年的车厢峡之战。详情
在中国的历史长河中,有许多重要的战役都以其独特的战术和深远的影响而被人们铭记。其中,车厢峡之战就详情
好水川之战是一场发生在1038年北宋与辽国之间的战役。这场战役发生在今天的四川省南部,因为当时的详情
浅水原之战是中国历史上著名的战役之一,发生在公元755年。这场战争是唐朝与安史之乱叛军之间的一场详情
雅克萨之战是中俄两国之间的一场重要战役,发生在1858年。在这场战役中,清朝军队和俄罗斯帝国军队详情
雅克萨之战是中俄两国之间的一场重要战役,发生在1858年。在这场战役中,清朝军队和俄罗斯帝国军队详情
在中国古代的神话传说中,姜子牙和鬼谷子都是极具智慧和能力的传奇人物。他们分别代表了道家和兵家的智详情
一、背景介绍 秦始皇陵兵马俑是中国历史上最著名的考古发现之一,被誉为世界第八大奇迹。然而,这些详情
标题:秦始皇10大诡异事件 一、陵墓之谜 1. 兵马俑:秦始皇陵的兵马俑被认为是世界上最大的详情
虞姬,中国历史上著名的女性人物,她与项羽的爱情故事被后人传颂不衰。而刘邦,作为项羽的对手和汉朝的详情
胤祥没有遭到雍正的清洗,但他在年轻时去世,这一点对于一些历史学家来说存在着一些争议。 一些人质详情
满清十二帝内没有溥仪的画像,只有照片,是什么原因呢? 在满清十二帝中,没有任何一位皇帝画过溥仪详情
溥仪的文化水平不仅仅是初中程度,尽管他的户口本上写着初中,但这并不是他真实的文化水平。 作为大详情
古人常说不孝有三,无后为大,而在皇权社会,皇帝不具备生育能力,可不仅仅是不孝的问题,毕竟古代历来详情
息肌丸是什么东西?真的有这种药存在吗?息肌丸是一种有催情作用的美容香精,塞到肚脐眼里融化到体内,详情
赵飞燕服用息肌丸保持美貌,息肌丸是什么东西呢?感兴趣的读者可以跟着趣历史小编一起往下看。 据说详情
历史上绵亿是荣亲王永琪与侧福晋索绰罗氏所生育的王府中的第五子,但其他的孩子都早早过世了,所以绵亿详情
彼岸花,又称曼珠沙华,是一种充满神秘色彩的花卉。这种花通常盛开在秋季,其鲜红的花瓣和细长的花蕊形详情
在现代社会,我们依赖于各种产品来完成日常生活的各个方面。从智能手机到笔记本电脑,从家用电器到汽车详情
在我们的日常生活中,我们常常会忽视地球上的一些奇妙之处。然而,当我们从太空中俯瞰地球时,这些事物详情
在生物多样性的广阔领域中,每一次新的物种发现都像是打开了一扇通向未知世界的窗户。最近,科学家们在详情
在这个世界上,有些物品的价值超越了我们的想象。它们不仅仅是物质的存在,更是艺术、历史和文化的象征详情
在世界的每一个角落,无论是热血沸腾的球场,还是电视机前的粉丝,都被一位女性棒球选手的魅力所吸引。详情
位于中国云南的九龙河瀑布群,被誉为中国的尼亚加拉,是中国最大的瀑布群。这里的瀑布高低错落,气势磅详情
北仑河口,位于中国浙江省宁波市北仑区,是中国大陆海岸线的最南点。这里既有美丽的海滨风光,也有丰富详情
鸭绿江口,位于中国东北地区,是中国大陆海岸线的最北点。这里既有壮丽的山川河流,也有悠久的历史文化详情
湖北省,位于中国中部,素有千湖之省的美誉。全省湖泊众多,水域面积占总面积的四分之一。今天,就让我详情
京九铁路,这条连接北京、上海、香港、澳门等9个省市的铁路干线,被誉为中国跨省市最多的铁路。今天,详情
成语兔死狗烹是一个充满故事性的成语,它的意思在于表达一种过河拆桥、忘恩负义的行为。具体来说,这个详情
《全唐诗》是在清代康熙年间编撰的。 《全唐诗》的编纂工作始于清代,由彭定求、杨中讷、沈三曾、潘详情
中国的传统俗语承载着丰富的文化遗产和历史智慧,其中男不拜月,女不拜灶是一句流传甚广的老话。这句俗详情
在中国的古代神话传说中,有四只凶猛无比的神兽,它们被称为四凶。这四只神兽分别是饕餮、混沌、穷奇和详情
在中国古代的神话与民间传说中,判官是地府中的司法官员,负责审判阴间亡魂的善恶与罪责。传说中的判官详情
《资治通鉴》是中国历史上一部极具影响力的编年体史书,它诞生于宋朝,由著名的历史学家司马光主编。这详情
中国的烹饪艺术以其多样性和复杂性而闻名于世,其中最为人熟知的便是分布在各地的八大菜系。每一菜系都详情
李时珍,明代著名医学家,他的代表作《本草纲目》被誉为中国乃至世界药学史上的一部巨著。这部书籍不仅详情
在中国古代的神话传说中,有许多神兽的形象深入人心。其中,最为人所熟知的莫过于饕餮。这个名字,源自详情
《洗冤集录》,作为世界上第一部系统的法医学专著,自南宋时期问世以来,就以其严谨的科学态度、细致的详情
在中国现代教育史上,蔡元培先生的名字如同一座里程碑,标志着中国高等教育的转型与飞跃。作为北京大学详情
在中国古代书法史上,有两位被誉为二王的著名书法家,他们就是王羲之和王献之父子。这两位东晋时期的大书法家,以其卓越的书法艺术成就,影响了后世无数书法家,被誉为书法史上的传奇人物。 首先,我们来谈谈王羲之。王羲之是东晋时期的一位著名书法家,被誉