祖暅(456年-536年),又名祖暅之,祖冲之之子,中国南北朝时期天文学家、数学家。
个人简介
祖冲之父子总结了魏晋时期著名数学家刘徽的有关工作,提出“幂势既同则积不容异”,即等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等,这就是著名的祖暅公理(或刘祖原理)。祖暅应用这个原理,解决了刘徽尚未解决的球体积公式,该原理在西方直到十七世纪才由意大利数学家卡瓦列利(Bonaventura Cavalieri)发现,比祖暅晚一千一百多年。
祖暅历任太府卿等职,受家庭的影响,尤其是父亲的影响,他从小就热爱科学,对数学具有特别浓厚的兴趣,祖冲之在462年编制《大明历》就是在祖暅三次建议的基础上完成的。《缀术》一书经学者们考证,有些条目就是祖暅所作。祖暅终生读书专心致志,因走路时思考问题所以闹出了许多笑话,祖暅原理是关于球体体积的计算方法,这是祖暅一生最有代表性的发现。
祖暅
人物生平
祖冲之去世后,他在梁朝天监三年(公元504年)、八年、九年先后三次上书,建议采用他父亲编制的《大明历》,终于使父亲的遗愿得以实现。
祖暅的主要工作是修补编辑他父亲的数学著作《缀术》。他运用祖暅原理和由他创造的开立圆术,发展了他父亲的研究成果,巧妙地证得球的体积公式。他求得这一公式比意大利数学家卡瓦列利(Bonaventura Cavalieri,1589年—1647年)至少要早1100年。
祖暅还有不少其他科学发现,例如肯定北极星并非真正在北天极,而要偏离一度多等等,算得这些结果,同他丰富的数学知识是分不开的。
由于家学渊源,祖暅从小也钻研数学。祖暅之有巧思入神之妙,当他读书思考时,十分专一,即使有雷霆之声,他也听不到。有一次,他边走路边思考数学问题,走着走着,竟然撞了对面过来的仆射徐勉。“仆射”是很高的官,徐勉是朝廷要人,倒被这位年轻小子碰得够戗,不禁大叫起来,这时祖暅之方才醒悟。梁朝与北魏打仗,失败,祖暅之被魏方扣留,安排住进了驿站,很受优待。
祖暅还结识了一位天文学的爱好者信都芳,两人常常在一起研讨天文、数学,十分投机。祖暅之把自己的学问毫无保留地教给信都芳,使他有很大进步。祖暅之在科学上也取得了重大成就,《大明历》就是由于他的建议,才被梁朝采用。有的记载说,《缀术》有他的研究成果。他首次得出计算球体体积的公式,虽然比阿基米德晚了将近千年,但由于是与其父祖冲之运用独创的方法得出的,也不失是一种智慧结晶。他还研制了铜日圭、漏壶等精密观测仪器多种。
祖暅将数学知识传给了信都芳、毛栖成和自己的儿子祖皓,他们三位后来都成了数学家。
具体介绍
祖暅在梁朝担任过员外散骑侍郎、太府卿、南康太守、材官将军、奉朝请等职务。祖暅青年时代已对天文学和数学造诣很深,是祖冲之科学事业的继承人。他的主要贡献是修补编辑祖冲之的《缀术》,因此可以说《缀术》是他们父子共同完成的数学杰作。《九章算术》少广章中李淳风注所引述的“祖暅之开立圆术”,详细记载了祖冲之父子解决球体积问题的方法。
刘徽注释《九章算术》时指出球与外切“牟合方盖”的体积之比为a:4,但他未能求出牟合方盖的体积。祖冲之父子采用了“幂势既同,则积不容异”(两个等高的立体,如在等高处的截面积恒相等,则体积相等)的原理,解决了这一问题,从而给出球体积的正确公式。这一原理后人称之为“祖暅原理”,在西方,直到17世纪才由意大利数学家卡瓦列利重新发现。
在天文学方面,祖暅曾于504年、509年和510年三次上书建议采用祖冲之的《大明历》,最后一次终于实现了父亲的遗愿,《大明历》被梁武帝天监年间采用颁行。他还亲自监造八尺铜表,测量日影长度,并发现了北极星与北天极不动处相差一度有余,改进过当时通用的计时器——漏壶。祖暅的著作有《漏刻经》《天文录》等,但前者失传,后者仅存残篇。
原理
祖暅原理也就是“等积原理”
“等积原理”是由我国南北朝杰出的数学家、祖冲之的儿子祖暅首先提出来的。祖暅原理的内容是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等。
等积原理的发现起源于《九章算术》中的答案是错误的。他提出的难方法是取每边为1寸的正方体棋子八枚,拼成一个边长为2寸的正方体,在正方体内画内切圆柱体,再在横向画一个同样的内切圆柱体。这样两个圆柱所包含的立体共同部分像两把上下对称的伞,刘徽将其取名为“牟合方盖”。(古时人称伞为“盖”,“牟”同侔,意即相合。)根据计算得出球体积是牟合方盖体的体积的四分之三,可是圆柱体又比牟合方盖大,但是《九章算术》中得出球的体积是圆柱体体积的四分之三,显然《九章算术》中的球体积计算公式是错误的。刘徽认为只要求出牟合方盖的体积,就可以求出球的体积。可怎么也找不出求导牟合方盖体积的途径。200多年后,祖暅出现了,他推导出了著名的“祖暅原理”,根据这一原理就可以求出牟合方盖的体积,然后再导出球的体积。
在现代的解析几何和测度应用中,祖暅原理是富比尼定理中的一个特例。西方的卡瓦列利没有对这条的严谨证明,只发表在1635年的Geometriaindivisibilibu以及1647年的ExercitationesGeometrica中,用以证明自己的MethodederIndivisibilie,以此方式可以计算某些立体的体积,甚至超越了阿基米德和克卜勒的成绩。这个定理引发了以面积计算体积的方法并成为了积分发展的一个重要步骤。
祖暅原理
圆柱体
如果垂直转轴切开圆柱体,设为半径,可以得到横切面面积为的圆形。根据祖暅原理,圆柱体的体积相等于方形面积相等于圆面积的立方体。
半球体
从其中一层以垂直表面的高横切半径为的半球体,根据勾股定理,求半径,横切面面积。对照立体是一个拥有与半球体相同表面积和高的立体,中间有一个圆锥体。高的对照立体环形切面有内圆周以及外圆周,因此两个立体都满足祖暅原理并且有相同体积。对照立体的体积便是圆柱体和圆锥体体积之差,所以成功利用这条有名的方程计算出半球体体积,从而导出球体体积公式。
微积分
祖暅原理背后的概念经常出现在微积分中。作为维度的一个例子,因此两条方程式在两个交点间的面积可以利用以下方程获得:实质上表示了函数图形和之间的面积与函数图形下的相同,而后者的交点距离与前者相等。由于现代数学中的积分和面积的互相关系,而体积可以通过微分计算,使祖暅原理变得更为少用。
在中国的历史上,三国时期是一个充满战争和英雄的时代。在这个时期,有一位文学家以其卓越的才华和独特详情
在明朝的历史中,有一位皇帝一直备受争议,他就是嘉靖皇帝。有人认为他是一位昏君,但也有人认为他有一详情
在中国古代历史的长河中,战争频繁的战国时期孕育了许多杰出的军事家和思想家。其中,吴起无疑是这一时详情
在明朝的历史中,有这样一位官员,他以严峻刚直著称,甚至连首辅张居正都对他忌惮三分。他就是明朝著名详情
王昌龄是盛唐时期的诗人。 王昌龄,字少伯,生于唐朝的鼎盛时期,这一时期也是边塞诗风最为盛行的时详情
慈禧太后,作为清朝末期的实际统治者,她的生活方式一直是人们关注的焦点。据史料记载,慈禧每日凌晨便详情
在中国历史上,楚汉之争是一段充满传奇色彩的历史。而在这场争斗中,有一个问题一直引人关注:项羽为何详情
在历史的长河中,有许多人物的形象常常因为各种原因而被扭曲,而我们今天要探讨的,就是明朝末年的一位详情
明朝是中国历史上一个充满传奇色彩的朝代,而在这个时代中,有一个人物的名字总是引人争议,他就是魏忠详情
在历史的长河中,总有一些人物和故事被时间的尘埃所掩盖,而今天我们要探讨的,便是关于曹睿身世的一段详情
在中国历史的长河中,有许多人物以其非凡的智慧和策略留下了深刻的印记。司马懿,这个名字在三国时期的详情
在蒙古帝国的历史中,成吉思汗的崛起是一个传奇。他的成功征服和统一了蒙古诸部,并最终建立了一个横跨详情
在中国古代社会,孝道是传统文化的核心之一。其中,入土为安是一种普遍的丧葬观念,意指人死后应被安葬详情
清朝乾隆年间,一个名叫和珅的官员迅速崛起,最终成为乾隆皇帝身边最受宠信的大臣。和珅的权势之大,影详情
在中国历史上,女性诗人的身影虽然稀少,但她们的作品却如璀璨的星辰般闪耀着不朽的光芒。东晋时期的女详情
在中国封建历史的长河中,皇帝后宫佳丽三千是常有的事,然而历史上却有这样一位特殊的帝王——明朝的建详情
冲绳岛战役,又称冲绳战,是第二次世界大战太平洋战场的最后一场重要陆地战役。XXXX年X月X日至6详情
在中国古代历史上,政治联姻往往是为了国家的利益而精心策划的一种手段。宣太后与义渠王的结合便是其中详情
在中国文学史上,诗歌一直是表达情感、传递思想的重要载体。特别是在南宋时期,面对国家危亡和社会动荡详情
在中国悠久的封建历史中,牛一直是农业生产的重要动力来源。因此,不少朝代出于对农业生产的重视,出台详情
在中国封建社会的长卷中,清朝乾隆年间的和珅无疑是一个极具争议的历史人物。作为乾隆皇帝身边最受宠信详情
在中国历史上,有许多女性因她们的智慧、美貌或权力而被后世铭记。王宝钏就是其中之一,她的名字与唐宣详情
在历史的长河中,有一场战争以惨烈著称,却在最绝望的时刻上演了逆转的奇迹——那就是发生在16世纪末详情
在中国古代历史上,长平之战是一场影响深远的军事冲突,它不仅改变了战国时期的国家力量对比,也对后世详情
在历史长河中,蒙古铁骑和八旗都是以勇猛善战而著称的军队。然而,谁才是更厉害的战争之王呢?这是一个详情
野狼坡之战,是唐朝历史上一场具有重要意义的战役。这场战役不仅对唐朝的边疆安全产生了深远的影响,而详情
在历史的长河中,战争往往是国家之间力量对比、文化碰撞和利益争夺的直接体现。公元前14世纪至公元前详情
在中国的历史长河中,有一场战役以其激烈的战斗和深远的影响而闻名于世,那就是明朝末年的车厢峡之战。详情
在中国的历史长河中,有许多重要的战役都以其独特的战术和深远的影响而被人们铭记。其中,车厢峡之战就详情
好水川之战是一场发生在1038年北宋与辽国之间的战役。这场战役发生在今天的四川省南部,因为当时的详情
浅水原之战是中国历史上著名的战役之一,发生在公元755年。这场战争是唐朝与安史之乱叛军之间的一场详情
雅克萨之战是中俄两国之间的一场重要战役,发生在1858年。在这场战役中,清朝军队和俄罗斯帝国军队详情
雅克萨之战是中俄两国之间的一场重要战役,发生在1858年。在这场战役中,清朝军队和俄罗斯帝国军队详情
在中国古代的神话传说中,姜子牙和鬼谷子都是极具智慧和能力的传奇人物。他们分别代表了道家和兵家的智详情
一、背景介绍 秦始皇陵兵马俑是中国历史上最著名的考古发现之一,被誉为世界第八大奇迹。然而,这些详情
标题:秦始皇10大诡异事件 一、陵墓之谜 1. 兵马俑:秦始皇陵的兵马俑被认为是世界上最大的详情
虞姬,中国历史上著名的女性人物,她与项羽的爱情故事被后人传颂不衰。而刘邦,作为项羽的对手和汉朝的详情
胤祥没有遭到雍正的清洗,但他在年轻时去世,这一点对于一些历史学家来说存在着一些争议。 一些人质详情
满清十二帝内没有溥仪的画像,只有照片,是什么原因呢? 在满清十二帝中,没有任何一位皇帝画过溥仪详情
溥仪的文化水平不仅仅是初中程度,尽管他的户口本上写着初中,但这并不是他真实的文化水平。 作为大详情
古人常说不孝有三,无后为大,而在皇权社会,皇帝不具备生育能力,可不仅仅是不孝的问题,毕竟古代历来详情
息肌丸是什么东西?真的有这种药存在吗?息肌丸是一种有催情作用的美容香精,塞到肚脐眼里融化到体内,详情
赵飞燕服用息肌丸保持美貌,息肌丸是什么东西呢?感兴趣的读者可以跟着趣历史小编一起往下看。 据说详情
历史上绵亿是荣亲王永琪与侧福晋索绰罗氏所生育的王府中的第五子,但其他的孩子都早早过世了,所以绵亿详情
彼岸花,又称曼珠沙华,是一种充满神秘色彩的花卉。这种花通常盛开在秋季,其鲜红的花瓣和细长的花蕊形详情
在现代社会,我们依赖于各种产品来完成日常生活的各个方面。从智能手机到笔记本电脑,从家用电器到汽车详情
在我们的日常生活中,我们常常会忽视地球上的一些奇妙之处。然而,当我们从太空中俯瞰地球时,这些事物详情
在生物多样性的广阔领域中,每一次新的物种发现都像是打开了一扇通向未知世界的窗户。最近,科学家们在详情
在这个世界上,有些物品的价值超越了我们的想象。它们不仅仅是物质的存在,更是艺术、历史和文化的象征详情
在世界的每一个角落,无论是热血沸腾的球场,还是电视机前的粉丝,都被一位女性棒球选手的魅力所吸引。详情
位于中国云南的九龙河瀑布群,被誉为中国的尼亚加拉,是中国最大的瀑布群。这里的瀑布高低错落,气势磅详情
北仑河口,位于中国浙江省宁波市北仑区,是中国大陆海岸线的最南点。这里既有美丽的海滨风光,也有丰富详情
鸭绿江口,位于中国东北地区,是中国大陆海岸线的最北点。这里既有壮丽的山川河流,也有悠久的历史文化详情
湖北省,位于中国中部,素有千湖之省的美誉。全省湖泊众多,水域面积占总面积的四分之一。今天,就让我详情
京九铁路,这条连接北京、上海、香港、澳门等9个省市的铁路干线,被誉为中国跨省市最多的铁路。今天,详情
中国的传统俗语承载着丰富的文化遗产和历史智慧,其中男不拜月,女不拜灶是一句流传甚广的老话。这句俗详情
在中国的古代神话传说中,有四只凶猛无比的神兽,它们被称为四凶。这四只神兽分别是饕餮、混沌、穷奇和详情
在中国古代的神话与民间传说中,判官是地府中的司法官员,负责审判阴间亡魂的善恶与罪责。传说中的判官详情
《资治通鉴》是中国历史上一部极具影响力的编年体史书,它诞生于宋朝,由著名的历史学家司马光主编。这详情
中国的烹饪艺术以其多样性和复杂性而闻名于世,其中最为人熟知的便是分布在各地的八大菜系。每一菜系都详情
李时珍,明代著名医学家,他的代表作《本草纲目》被誉为中国乃至世界药学史上的一部巨著。这部书籍不仅详情
在中国古代的神话传说中,有许多神兽的形象深入人心。其中,最为人所熟知的莫过于饕餮。这个名字,源自详情
《洗冤集录》,作为世界上第一部系统的法医学专著,自南宋时期问世以来,就以其严谨的科学态度、细致的详情
在中国现代教育史上,蔡元培先生的名字如同一座里程碑,标志着中国高等教育的转型与飞跃。作为北京大学详情
西门吹雪,这个名字在文学和影视作品中都留下了深刻的印记。他以剑术高超、性格孤傲而著称,被誉为剑神详情
在中国古代,丹书铁券被视为一种至高无上的免死金牌,它代表着持有者可以免受一切法律的制裁。而在《水详情
在中国的历史上,三国时期是一个充满战争和英雄的时代。在这个时期,有一位文学家以其卓越的才华和独特的风格脱颖而出,他就是曹植。今天,我们就来探讨一下这位建安文学的代表人物——曹植。 曹植,字子建,是东汉末年著名的政治家、军事家曹操的儿子。他生于一